
The unit of angular acceleration in the $SI$ system is
(A) $N\,K{h^{ - 1}}$
(B) $m{s^{ - 2}}$
(C) $rad{s^{ - 2}}$
(D) $mK{g^{ - 1}}K$
Answer
123.6k+ views
Hint If the motion takes place in a circular or a semicircular way, then the motion, velocity and the acceleration all are specified by the angular acceleration. The $SI$ unit is the standard system of units that is used mostly all over the world.
Useful formula
(1) The formula of the angular acceleration is given by
$\alpha = \dfrac{\omega }{t}$
Where $\alpha $ is the angular acceleration, $\omega $ is the angular velocity and the $t$ is the time taken for the angular movement.
(2) The formula of the angular velocity is given by
$\omega = \dfrac{\theta }{t}$
Where $\theta $ is the angular displacement.
Complete step by step solution
The angular acceleration is defined as the rate of change of the angular velocity with that of the time. Or it can also be defined as the twice the rate of change of the angular displacement with that of the time.
Using the formula of the angular acceleration,
$\alpha = \dfrac{\omega }{t}$
Substituting the formula (2) in the formula (1) , we get
$\alpha = \dfrac{{\dfrac{\theta }{t}}}{t}$
By simplification of the above equation, we get
$\alpha = \dfrac{\theta }{{{t^2}}}$
The $SI$ unit of the angular displacement is radians and the $SI$ unit of the time taken is second. Substituting these in the above formula, the $SI$ unit of the angular acceleration is obtained as $rad{s^{ - 2}}$ .
Thus the option (C) is correct.
Note Remember that the $SI$ unit of the length is metre, mass is kilogram, time is second, angular length is radian, and the temperature is kelvin. They are the fundamental quantity. The angular acceleration is the derived quantity that is obtained from the above fundamental quantities.
Useful formula
(1) The formula of the angular acceleration is given by
$\alpha = \dfrac{\omega }{t}$
Where $\alpha $ is the angular acceleration, $\omega $ is the angular velocity and the $t$ is the time taken for the angular movement.
(2) The formula of the angular velocity is given by
$\omega = \dfrac{\theta }{t}$
Where $\theta $ is the angular displacement.
Complete step by step solution
The angular acceleration is defined as the rate of change of the angular velocity with that of the time. Or it can also be defined as the twice the rate of change of the angular displacement with that of the time.
Using the formula of the angular acceleration,
$\alpha = \dfrac{\omega }{t}$
Substituting the formula (2) in the formula (1) , we get
$\alpha = \dfrac{{\dfrac{\theta }{t}}}{t}$
By simplification of the above equation, we get
$\alpha = \dfrac{\theta }{{{t^2}}}$
The $SI$ unit of the angular displacement is radians and the $SI$ unit of the time taken is second. Substituting these in the above formula, the $SI$ unit of the angular acceleration is obtained as $rad{s^{ - 2}}$ .
Thus the option (C) is correct.
Note Remember that the $SI$ unit of the length is metre, mass is kilogram, time is second, angular length is radian, and the temperature is kelvin. They are the fundamental quantity. The angular acceleration is the derived quantity that is obtained from the above fundamental quantities.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

The ratio of the diameters of two metallic rods of class 11 physics JEE_Main

What is the difference between Conduction and conv class 11 physics JEE_Main

Mark the correct statements about the friction between class 11 physics JEE_Main

Find the acceleration of the wedge towards the right class 11 physics JEE_Main

A standing wave is formed by the superposition of two class 11 physics JEE_Main

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

Charging and Discharging of Capacitor

Physics Average Value and RMS Value JEE Main 2025

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions

JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Course 2025: Get All the Relevant Details

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Mechanical Properties of Fluids Class 11 Notes: CBSE Physics Chapter 9

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Revision Notes for Physics on Modern Physics

JEE Main 2022 July 28 Shift 2 Question Paper with Answer Keys & Solutions
