
The third term of a G.P is 4. The product of the first five terms is
A .\[{4^3}\]
B. \[{4^5}\]
C .\[{4^4}\]
D. None of these
Answer
206.7k+ views
Hint- Proceed the solution of this question by considering the general term of GP in our mind such that their multiplication can itself form such a number which are either known or can be found.
Complete step-by-step solution -
Let the common ratio be r and the terms be ${\text{a,ar,a}}{{\text{r}}^2}{\text{,a}}{{\text{r}}^3}{\text{,a}}{{\text{r}}^4}....$and so on in G.P.
Here a is the 1st number, ${\text{ar}}$ be the 2nd number, ${\text{a}}{{\text{r}}^2}$be the third number and so on.
In the question, it is given that the third term of GP is equal to 4.
⇒${\text{a}}{{\text{r}}^2}$=4 ... (1)
Therefore, the product of the first five term is given by,
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {{\text{a}}^5} \times {{\text{r}}^{10}}\]
On further simplifying
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( {{\text{a}} \times {{\text{r}}^2}} \right)^5}\]
From equation (1), substitute ${\text{a}}{{\text{r}}^2}$=4; we get
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( 4 \right)^5}\]
Thus, the product of the first five term is \[{\left( 4 \right)^5}\]
Hence option B is correct.
Note- In a G.P. as we know that, each term is multiplied by the common ratio \[{\text{r}}\]. To get the second term, the first term is multiplied by \[{\text{r}}\]. We get the third term by multiplying the first term by \[{{\text{r}}^2}\]Similarly, we will get the fourth term by multiplying the first term by \[{{\text{r}}^3}\] and so on. Hence 3rd term is the geometric mean of 2nd and 4th term as well as 1st and 5th term of GP. Hence multiplication of the first 5 numbers can be written in exponential form of their geometrical form.
Complete step-by-step solution -
Let the common ratio be r and the terms be ${\text{a,ar,a}}{{\text{r}}^2}{\text{,a}}{{\text{r}}^3}{\text{,a}}{{\text{r}}^4}....$and so on in G.P.
Here a is the 1st number, ${\text{ar}}$ be the 2nd number, ${\text{a}}{{\text{r}}^2}$be the third number and so on.
In the question, it is given that the third term of GP is equal to 4.
⇒${\text{a}}{{\text{r}}^2}$=4 ... (1)
Therefore, the product of the first five term is given by,
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {{\text{a}}^5} \times {{\text{r}}^{10}}\]
On further simplifying
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( {{\text{a}} \times {{\text{r}}^2}} \right)^5}\]
From equation (1), substitute ${\text{a}}{{\text{r}}^2}$=4; we get
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( 4 \right)^5}\]
Thus, the product of the first five term is \[{\left( 4 \right)^5}\]
Hence option B is correct.
Note- In a G.P. as we know that, each term is multiplied by the common ratio \[{\text{r}}\]. To get the second term, the first term is multiplied by \[{\text{r}}\]. We get the third term by multiplying the first term by \[{{\text{r}}^2}\]Similarly, we will get the fourth term by multiplying the first term by \[{{\text{r}}^3}\] and so on. Hence 3rd term is the geometric mean of 2nd and 4th term as well as 1st and 5th term of GP. Hence multiplication of the first 5 numbers can be written in exponential form of their geometrical form.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Average and RMS Value in Physics: Formula, Comparison & Application

Geostationary and Geosynchronous Satellites Explained

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

Top 10 NIT Colleges in India 2025: Rankings, Courses, Eligibility and More

Photoelectric Effect and Stopping Potential: Concept, Formula & Exam Guide

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 5 Linear Inequalities 2025-26

Cbse Class 11 Maths Notes Chapter 9 Straight Lines

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions For Class 11 Maths Chapter 14 Probability - 2025-26

