
The third term of a G.P is 4. The product of the first five terms is
A .\[{4^3}\]
B. \[{4^5}\]
C .\[{4^4}\]
D. None of these
Answer
214.5k+ views
Hint- Proceed the solution of this question by considering the general term of GP in our mind such that their multiplication can itself form such a number which are either known or can be found.
Complete step-by-step solution -
Let the common ratio be r and the terms be ${\text{a,ar,a}}{{\text{r}}^2}{\text{,a}}{{\text{r}}^3}{\text{,a}}{{\text{r}}^4}....$and so on in G.P.
Here a is the 1st number, ${\text{ar}}$ be the 2nd number, ${\text{a}}{{\text{r}}^2}$be the third number and so on.
In the question, it is given that the third term of GP is equal to 4.
⇒${\text{a}}{{\text{r}}^2}$=4 ... (1)
Therefore, the product of the first five term is given by,
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {{\text{a}}^5} \times {{\text{r}}^{10}}\]
On further simplifying
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( {{\text{a}} \times {{\text{r}}^2}} \right)^5}\]
From equation (1), substitute ${\text{a}}{{\text{r}}^2}$=4; we get
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( 4 \right)^5}\]
Thus, the product of the first five term is \[{\left( 4 \right)^5}\]
Hence option B is correct.
Note- In a G.P. as we know that, each term is multiplied by the common ratio \[{\text{r}}\]. To get the second term, the first term is multiplied by \[{\text{r}}\]. We get the third term by multiplying the first term by \[{{\text{r}}^2}\]Similarly, we will get the fourth term by multiplying the first term by \[{{\text{r}}^3}\] and so on. Hence 3rd term is the geometric mean of 2nd and 4th term as well as 1st and 5th term of GP. Hence multiplication of the first 5 numbers can be written in exponential form of their geometrical form.
Complete step-by-step solution -
Let the common ratio be r and the terms be ${\text{a,ar,a}}{{\text{r}}^2}{\text{,a}}{{\text{r}}^3}{\text{,a}}{{\text{r}}^4}....$and so on in G.P.
Here a is the 1st number, ${\text{ar}}$ be the 2nd number, ${\text{a}}{{\text{r}}^2}$be the third number and so on.
In the question, it is given that the third term of GP is equal to 4.
⇒${\text{a}}{{\text{r}}^2}$=4 ... (1)
Therefore, the product of the first five term is given by,
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {{\text{a}}^5} \times {{\text{r}}^{10}}\]
On further simplifying
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( {{\text{a}} \times {{\text{r}}^2}} \right)^5}\]
From equation (1), substitute ${\text{a}}{{\text{r}}^2}$=4; we get
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( 4 \right)^5}\]
Thus, the product of the first five term is \[{\left( 4 \right)^5}\]
Hence option B is correct.
Note- In a G.P. as we know that, each term is multiplied by the common ratio \[{\text{r}}\]. To get the second term, the first term is multiplied by \[{\text{r}}\]. We get the third term by multiplying the first term by \[{{\text{r}}^2}\]Similarly, we will get the fourth term by multiplying the first term by \[{{\text{r}}^3}\] and so on. Hence 3rd term is the geometric mean of 2nd and 4th term as well as 1st and 5th term of GP. Hence multiplication of the first 5 numbers can be written in exponential form of their geometrical form.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

