
The terminal C atom in butane is _______ hybridized.
(A) $ds{{p}^{2}}$
(B) $sp$
(C) $s{{p}^{2}}$
(D) $s{{p}^{3}}$
Answer
153k+ views
Hint: There are 2 terminal carbons in the butane chain and both of them have the same hybridization. Both the terminal carbon atoms form 4 single bonds.
Complete step by step solution:
Butane is a member of the alkane group. It has 4 carbons. It has a straight-chain structure.
The formula of butane is ${{C}_{4}}{{H}_{8}}$
Since it is a member of the alkane group, all the bonds in butane will be a single bond.
So the structure of butane is given below:

So, there are two terminal carbon atoms in the butane, carbon number one and four.
Both the carbon atoms are connected to three hydrogen atoms and one propyl group.
There are some steps which can help to calculate the hybridization of an atom:
First, look at the atom and count the number of atoms or molecules to which it is connected. If the atom has lone pairs, then it is also counted.
Add both numbers and:
If the number is 4 then it is $s{{p}^{3}}$hybridized.
If the number is 3 then it is $s{{p}^{2}}$hybridized
If the number is 2 then it is $sp$hybridized
So, in both the terminal carbon atoms of butane the number is 4 (three hydrogen atoms and one propyl molecule).
Hence, the hybridization is $s{{p}^{3}}$.
So, the correct answer is an option (d)- $s{{p}^{3}}$.
Note: $s{{p}^{2}}$hybridization mostly occurs when the carbon atom has a double bond and $sp$hybridization occurs mostly when the carbon atom has a triple bond. $ds{{p}^{2}}$hybridization is shown by heavier elements because they have vacant d-orbitals.
Complete step by step solution:
Butane is a member of the alkane group. It has 4 carbons. It has a straight-chain structure.
The formula of butane is ${{C}_{4}}{{H}_{8}}$
Since it is a member of the alkane group, all the bonds in butane will be a single bond.
So the structure of butane is given below:

So, there are two terminal carbon atoms in the butane, carbon number one and four.
Both the carbon atoms are connected to three hydrogen atoms and one propyl group.
There are some steps which can help to calculate the hybridization of an atom:
First, look at the atom and count the number of atoms or molecules to which it is connected. If the atom has lone pairs, then it is also counted.
Add both numbers and:
If the number is 4 then it is $s{{p}^{3}}$hybridized.
If the number is 3 then it is $s{{p}^{2}}$hybridized
If the number is 2 then it is $sp$hybridized
So, in both the terminal carbon atoms of butane the number is 4 (three hydrogen atoms and one propyl molecule).
Hence, the hybridization is $s{{p}^{3}}$.
So, the correct answer is an option (d)- $s{{p}^{3}}$.
Note: $s{{p}^{2}}$hybridization mostly occurs when the carbon atom has a double bond and $sp$hybridization occurs mostly when the carbon atom has a triple bond. $ds{{p}^{2}}$hybridization is shown by heavier elements because they have vacant d-orbitals.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

The stability of the following alkali metal chlorides class 11 chemistry JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
