
The temperature of equal masses of three different liquids $A$, $B$ and $C$ are ${12^ \circ }\,C$, ${19^ \circ }\,C$ and ${28^ \circ }\,C$ respectively. The temperature when $A$ and $B$ are mixed is ${16^ \circ }\,C$ and when $B$ and $C$ are mixed is ${23^ \circ }\,C$. What is the temperature when $A$ and $C$ are mixed?
(A) ${18.2^ \circ }\,C$
(B) ${22^ \circ }\,C$
(C) ${20.3^ \circ }\,C$
(D) ${24.2^ \circ }\,C$
Answer
214.5k+ views
Hint: The equation shows the relationship between the heat energy and the temperature which are different for different materials and shows that the specific heat is a value and describes how they relate to the heat energy. By using the specific heat capacity formula, the temperature is determined.
Useful formula
Specific heat capacity formula,
$Q = mc\Delta T$
Where, $Q$ is the heat energy, $m$ is the mass of the substance, $c$ is the specific heat, $\Delta T$ is the temperature difference
Complete step by step solution
the data that are given in the problem is;
temperature of the liquid $A = {12^ \circ }\,C$
temperature of the liquid $B = {19^ \circ }\,C$
temperature of the liquid $C = {28^ \circ }\,C$
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
1. The liquids $A$ and $B$ are mixed together. Then, the final temperature is ${16^ \circ }\,C$.
When the liquids $A$ and $B$ are mixed together,
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $B$
By using specific heat capacity formula,
${Q_A} = {Q_B}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_B}$ is the heat energy of liquid $B$.
${Q_A} = {Q_B}$
${m_A}{c_A}\left( {16 - 12} \right) = {m_B}{c_B}\left( {19 - 16} \right)\,.............\left( 1 \right)$
Where, ${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$,${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (1) be changed as,
$m{c_A}\left( {16 - 12} \right) = m{c_B}\left( {19 - 16} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {16 - 12} \right) = {c_B}\left( {19 - 16} \right)$
On further simplifying,
$4{c_A} = 3{c_B}$
Therefore,
${c_B} = \dfrac{4}{3}{c_A}\,.............\left( 2 \right)$
2. The liquids $B$ and $C$ are mixed together. Then, the final temperature is ${23^ \circ }\,C$.
When the liquids $B$ and $C$ are mixed together,
Heat gained by the liquid $B$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_B} = {Q_C}$
Where, ${Q_B}$ is the heat energy of liquid $B$, ${Q_C}$ is the heat energy of liquid $C$.
${Q_B} = {Q_C}$
${m_B}{c_B}\left( {23 - 19} \right) = {m_C}{c_C}\left( {28 - 23} \right)\,.............\left( 3 \right)$
Where, ${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (3) be changed as,
$m{c_B}\left( {23 - 19} \right) = m{c_C}\left( {28 - 23} \right)$
By cancelling the same term $m$ on both sides,
${c_B}\left( {23 - 19} \right) = {c_C}\left( {28 - 23} \right)$
On further simplifying,
$4{c_B} = 5{c_C}$
Therefore,
${c_C} = \dfrac{4}{5}{c_B}\,................\left( 4 \right)$
Substituting the equation (3) in equation (4), then,
${c_C} = \dfrac{4}{5} \times \dfrac{4}{3}{c_A}$
On multiplying,
${c_C} = \dfrac{{16}}{{15}}{c_A}\,...............\left( 5 \right)$
3. The liquids $A$ and $C$ are mixed together. Then, the final temperature is $T$.
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_A} = {Q_C}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_C}$ is the heat energy of liquid $C$
${Q_A} = {Q_C}$
${m_A}{c_A}\left( {T - 12} \right) = {m_C}{c_C}\left( {28 - T} \right)\,............\left( 6 \right)$
Where,${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (6) be changed as,
$m{c_A}\left( {T - 12} \right) = m{c_C}\left( {28 - T} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {T - 12} \right) = {c_C}\left( {28 - T} \right)\,.................\left( 7 \right)$
On substituting the equation (5) in equation (7), then,
${c_A}\left( {T - 12} \right) = \dfrac{{16}}{{15}}{c_A} \times \left( {28 - T} \right)\,$
By cancelling the same terms on each side,
\[\left( {T - 12} \right) = \dfrac{{16}}{{15}}\left( {28 - T} \right)\,\]
On further,
\[15\left( {T - 12} \right) = 16\left( {28 - T} \right)\,\]
By multiplying,
$15T - 180 = 448 - 16T$
Takin the $T$ on one side and other terms in other side,
$15T + 16T = 448 + 180$
On further calculation,
$31T = 628$
Then,
$T = \dfrac{{628}}{{31}}$
On dividing,
$
T = {20.25^ \circ }\,C \\
T \simeq {20.3^ \circ }\,C \\
$
Thus, the temperature when $A$ and $C$ are mixed is ${20.3^ \circ }\,C$
Hence, the option (C) is correct.
Note: When the liquids are mixed together so the heat energy equation for the two liquids are equated. And all the three liquids are having the same mass then the mass value gets cancelled in the equations. The liquid $A$ and $C$ are mixed together then the final temperature is assumed as $T$.
Useful formula
Specific heat capacity formula,
$Q = mc\Delta T$
Where, $Q$ is the heat energy, $m$ is the mass of the substance, $c$ is the specific heat, $\Delta T$ is the temperature difference
Complete step by step solution
the data that are given in the problem is;
temperature of the liquid $A = {12^ \circ }\,C$
temperature of the liquid $B = {19^ \circ }\,C$
temperature of the liquid $C = {28^ \circ }\,C$
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
1. The liquids $A$ and $B$ are mixed together. Then, the final temperature is ${16^ \circ }\,C$.
When the liquids $A$ and $B$ are mixed together,
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $B$
By using specific heat capacity formula,
${Q_A} = {Q_B}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_B}$ is the heat energy of liquid $B$.
${Q_A} = {Q_B}$
${m_A}{c_A}\left( {16 - 12} \right) = {m_B}{c_B}\left( {19 - 16} \right)\,.............\left( 1 \right)$
Where, ${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$,${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (1) be changed as,
$m{c_A}\left( {16 - 12} \right) = m{c_B}\left( {19 - 16} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {16 - 12} \right) = {c_B}\left( {19 - 16} \right)$
On further simplifying,
$4{c_A} = 3{c_B}$
Therefore,
${c_B} = \dfrac{4}{3}{c_A}\,.............\left( 2 \right)$
2. The liquids $B$ and $C$ are mixed together. Then, the final temperature is ${23^ \circ }\,C$.
When the liquids $B$ and $C$ are mixed together,
Heat gained by the liquid $B$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_B} = {Q_C}$
Where, ${Q_B}$ is the heat energy of liquid $B$, ${Q_C}$ is the heat energy of liquid $C$.
${Q_B} = {Q_C}$
${m_B}{c_B}\left( {23 - 19} \right) = {m_C}{c_C}\left( {28 - 23} \right)\,.............\left( 3 \right)$
Where, ${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (3) be changed as,
$m{c_B}\left( {23 - 19} \right) = m{c_C}\left( {28 - 23} \right)$
By cancelling the same term $m$ on both sides,
${c_B}\left( {23 - 19} \right) = {c_C}\left( {28 - 23} \right)$
On further simplifying,
$4{c_B} = 5{c_C}$
Therefore,
${c_C} = \dfrac{4}{5}{c_B}\,................\left( 4 \right)$
Substituting the equation (3) in equation (4), then,
${c_C} = \dfrac{4}{5} \times \dfrac{4}{3}{c_A}$
On multiplying,
${c_C} = \dfrac{{16}}{{15}}{c_A}\,...............\left( 5 \right)$
3. The liquids $A$ and $C$ are mixed together. Then, the final temperature is $T$.
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_A} = {Q_C}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_C}$ is the heat energy of liquid $C$
${Q_A} = {Q_C}$
${m_A}{c_A}\left( {T - 12} \right) = {m_C}{c_C}\left( {28 - T} \right)\,............\left( 6 \right)$
Where,${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (6) be changed as,
$m{c_A}\left( {T - 12} \right) = m{c_C}\left( {28 - T} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {T - 12} \right) = {c_C}\left( {28 - T} \right)\,.................\left( 7 \right)$
On substituting the equation (5) in equation (7), then,
${c_A}\left( {T - 12} \right) = \dfrac{{16}}{{15}}{c_A} \times \left( {28 - T} \right)\,$
By cancelling the same terms on each side,
\[\left( {T - 12} \right) = \dfrac{{16}}{{15}}\left( {28 - T} \right)\,\]
On further,
\[15\left( {T - 12} \right) = 16\left( {28 - T} \right)\,\]
By multiplying,
$15T - 180 = 448 - 16T$
Takin the $T$ on one side and other terms in other side,
$15T + 16T = 448 + 180$
On further calculation,
$31T = 628$
Then,
$T = \dfrac{{628}}{{31}}$
On dividing,
$
T = {20.25^ \circ }\,C \\
T \simeq {20.3^ \circ }\,C \\
$
Thus, the temperature when $A$ and $C$ are mixed is ${20.3^ \circ }\,C$
Hence, the option (C) is correct.
Note: When the liquids are mixed together so the heat energy equation for the two liquids are equated. And all the three liquids are having the same mass then the mass value gets cancelled in the equations. The liquid $A$ and $C$ are mixed together then the final temperature is assumed as $T$.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Collision: Meaning, Types & Examples in Physics

