
The temperature of a room heated by a heater is $20^\circ C$ when outside temperature is $ - 20^\circ C$ and it is $10^\circ C$ when the outside temperature is $ - 40^\circ C$. The temperature of the heater is:
A) $80^\circ C$
B) $100^\circ C$
C) $40^\circ C$
D) $60^\circ C$
Answer
147.9k+ views
Hint: When heater gives heat to room then temperature of room increases and outside temperature of room is below then room so from room heat start to transfer to the outside of room from inside of room. In the study state the rate of heat transfer increases from heater to room so the rate of heat transfer also increases between room and outside.
Complete step by step answer:
To solve this question we use at the study state the rate of heat flow between heater and room is equal to the rate of heat flow between room to outside.
I.e. Rate of heat flow between heater and room $ \propto $ rate of heat flow between room and outside of room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}}$ ......................... (1)
Let us assume at the study state the temperature of heater is ${T_h}$ and temperature of room is ${T_r}$ and outside temperature ${T_o}$
We know the rate of heat flow is proportional to the temperature difference so we can write for the heater and room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto \left( {{T_h} - {T_r}} \right)$
And rate of flow of heat between room and outside
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}} \propto \left( {{T_r} - {T_o}} \right)$
From equation (1)
$ \Rightarrow \left( {{T_h} - {T_r}} \right) \propto \left( {{T_r} - {T_o}} \right)$
$ \Rightarrow \left( {{T_h} - {T_r}} \right) = k\left( {{T_r} - {T_o}} \right)$................ (2)
There are given two condition in question when room temperature ${T_r} = 20^\circ C$ and outside temperature is ${T_o} = - 20^\circ C$
Put these value in equation (2)
$\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)$ ............ (3)
When ${T_r} = 10^\circ C$ and ${T_o} = - 40^\circ C$ then from (2)
$ \Rightarrow \left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)$.................. (4)
Divide equation (3) by (4)
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)}}{{\left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)}}$
Solving this
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right)}}{{\left( {{T_h} - 10} \right)}} = \dfrac{{40}}{{50}}$
$ \Rightarrow 5{T_h} - 100 = 4{T_h} - 40$
Further solving
$ \Rightarrow {T_h} = 100 - 40$
$\therefore {T_h} = 60^\circ C$
Hence option (D) is correct.
Note: The rate of heat flow can be defined as amount of heat flow per unit time which is depends on given factors as we can know the formula of rate of heat flow
$\dfrac{{dQ}}{{dt}} = kA\dfrac{{{T_2} - {T_1}}}{L}$
Where $k \Rightarrow $ coefficient of thermal conductivity
$A \Rightarrow $ Area
$L \Rightarrow $ Length of medium
From this formula we can understand the rate of heat flow proportional to the temperature difference.
Complete step by step answer:
To solve this question we use at the study state the rate of heat flow between heater and room is equal to the rate of heat flow between room to outside.
I.e. Rate of heat flow between heater and room $ \propto $ rate of heat flow between room and outside of room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}}$ ......................... (1)
Let us assume at the study state the temperature of heater is ${T_h}$ and temperature of room is ${T_r}$ and outside temperature ${T_o}$
We know the rate of heat flow is proportional to the temperature difference so we can write for the heater and room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto \left( {{T_h} - {T_r}} \right)$
And rate of flow of heat between room and outside
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}} \propto \left( {{T_r} - {T_o}} \right)$
From equation (1)
$ \Rightarrow \left( {{T_h} - {T_r}} \right) \propto \left( {{T_r} - {T_o}} \right)$
$ \Rightarrow \left( {{T_h} - {T_r}} \right) = k\left( {{T_r} - {T_o}} \right)$................ (2)
There are given two condition in question when room temperature ${T_r} = 20^\circ C$ and outside temperature is ${T_o} = - 20^\circ C$
Put these value in equation (2)
$\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)$ ............ (3)
When ${T_r} = 10^\circ C$ and ${T_o} = - 40^\circ C$ then from (2)
$ \Rightarrow \left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)$.................. (4)
Divide equation (3) by (4)
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)}}{{\left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)}}$
Solving this
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right)}}{{\left( {{T_h} - 10} \right)}} = \dfrac{{40}}{{50}}$
$ \Rightarrow 5{T_h} - 100 = 4{T_h} - 40$
Further solving
$ \Rightarrow {T_h} = 100 - 40$
$\therefore {T_h} = 60^\circ C$
Hence option (D) is correct.
Note: The rate of heat flow can be defined as amount of heat flow per unit time which is depends on given factors as we can know the formula of rate of heat flow
$\dfrac{{dQ}}{{dt}} = kA\dfrac{{{T_2} - {T_1}}}{L}$
Where $k \Rightarrow $ coefficient of thermal conductivity
$A \Rightarrow $ Area
$L \Rightarrow $ Length of medium
From this formula we can understand the rate of heat flow proportional to the temperature difference.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main 2023 (January 29th Shift 1) Physics Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2022 (June 24th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Electrical Field of Charged Spherical Shell - JEE

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
