
The temperature of a room heated by a heater is $20^\circ C$ when outside temperature is $ - 20^\circ C$ and it is $10^\circ C$ when the outside temperature is $ - 40^\circ C$. The temperature of the heater is:
A) $80^\circ C$
B) $100^\circ C$
C) $40^\circ C$
D) $60^\circ C$
Answer
218.7k+ views
Hint: When heater gives heat to room then temperature of room increases and outside temperature of room is below then room so from room heat start to transfer to the outside of room from inside of room. In the study state the rate of heat transfer increases from heater to room so the rate of heat transfer also increases between room and outside.
Complete step by step answer:
To solve this question we use at the study state the rate of heat flow between heater and room is equal to the rate of heat flow between room to outside.
I.e. Rate of heat flow between heater and room $ \propto $ rate of heat flow between room and outside of room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}}$ ......................... (1)
Let us assume at the study state the temperature of heater is ${T_h}$ and temperature of room is ${T_r}$ and outside temperature ${T_o}$
We know the rate of heat flow is proportional to the temperature difference so we can write for the heater and room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto \left( {{T_h} - {T_r}} \right)$
And rate of flow of heat between room and outside
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}} \propto \left( {{T_r} - {T_o}} \right)$
From equation (1)
$ \Rightarrow \left( {{T_h} - {T_r}} \right) \propto \left( {{T_r} - {T_o}} \right)$
$ \Rightarrow \left( {{T_h} - {T_r}} \right) = k\left( {{T_r} - {T_o}} \right)$................ (2)
There are given two condition in question when room temperature ${T_r} = 20^\circ C$ and outside temperature is ${T_o} = - 20^\circ C$
Put these value in equation (2)
$\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)$ ............ (3)
When ${T_r} = 10^\circ C$ and ${T_o} = - 40^\circ C$ then from (2)
$ \Rightarrow \left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)$.................. (4)
Divide equation (3) by (4)
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)}}{{\left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)}}$
Solving this
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right)}}{{\left( {{T_h} - 10} \right)}} = \dfrac{{40}}{{50}}$
$ \Rightarrow 5{T_h} - 100 = 4{T_h} - 40$
Further solving
$ \Rightarrow {T_h} = 100 - 40$
$\therefore {T_h} = 60^\circ C$
Hence option (D) is correct.
Note: The rate of heat flow can be defined as amount of heat flow per unit time which is depends on given factors as we can know the formula of rate of heat flow
$\dfrac{{dQ}}{{dt}} = kA\dfrac{{{T_2} - {T_1}}}{L}$
Where $k \Rightarrow $ coefficient of thermal conductivity
$A \Rightarrow $ Area
$L \Rightarrow $ Length of medium
From this formula we can understand the rate of heat flow proportional to the temperature difference.
Complete step by step answer:
To solve this question we use at the study state the rate of heat flow between heater and room is equal to the rate of heat flow between room to outside.
I.e. Rate of heat flow between heater and room $ \propto $ rate of heat flow between room and outside of room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}}$ ......................... (1)
Let us assume at the study state the temperature of heater is ${T_h}$ and temperature of room is ${T_r}$ and outside temperature ${T_o}$
We know the rate of heat flow is proportional to the temperature difference so we can write for the heater and room.
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{heater \to room}} \propto \left( {{T_h} - {T_r}} \right)$
And rate of flow of heat between room and outside
$ \Rightarrow {\left( {\dfrac{{dQ}}{{dt}}} \right)_{room \to outside}} \propto \left( {{T_r} - {T_o}} \right)$
From equation (1)
$ \Rightarrow \left( {{T_h} - {T_r}} \right) \propto \left( {{T_r} - {T_o}} \right)$
$ \Rightarrow \left( {{T_h} - {T_r}} \right) = k\left( {{T_r} - {T_o}} \right)$................ (2)
There are given two condition in question when room temperature ${T_r} = 20^\circ C$ and outside temperature is ${T_o} = - 20^\circ C$
Put these value in equation (2)
$\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)$ ............ (3)
When ${T_r} = 10^\circ C$ and ${T_o} = - 40^\circ C$ then from (2)
$ \Rightarrow \left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)$.................. (4)
Divide equation (3) by (4)
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right) = k\left( {20 - \left( { - 20} \right)} \right)}}{{\left( {{T_h} - 10} \right) = k\left( {10 - \left( { - 40} \right)} \right)}}$
Solving this
$ \Rightarrow \dfrac{{\left( {{T_h} - 20} \right)}}{{\left( {{T_h} - 10} \right)}} = \dfrac{{40}}{{50}}$
$ \Rightarrow 5{T_h} - 100 = 4{T_h} - 40$
Further solving
$ \Rightarrow {T_h} = 100 - 40$
$\therefore {T_h} = 60^\circ C$
Hence option (D) is correct.
Note: The rate of heat flow can be defined as amount of heat flow per unit time which is depends on given factors as we can know the formula of rate of heat flow
$\dfrac{{dQ}}{{dt}} = kA\dfrac{{{T_2} - {T_1}}}{L}$
Where $k \Rightarrow $ coefficient of thermal conductivity
$A \Rightarrow $ Area
$L \Rightarrow $ Length of medium
From this formula we can understand the rate of heat flow proportional to the temperature difference.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

