
The temperature coefficient of resistance of tungsten is $4.5 \times {10^{ - 3}}^\circ {C^{ - 1}}$ and that of germanium is $ - 5 \times {10^{ - 2}}^\circ {C^{ - 1}}$. A tungsten wire of resistance $100\Omega $ is connected in series with a germanium wire of resistance $R$. The value of $R$ for which the resistance of combination does not change with temperature is?
(A) $9\Omega $
(B) $1111\Omega $
(C) $0.9\Omega $
(D) $111.1\Omega $
Answer
207k+ views
Hint In electric conductors as temperature increases, interatomic vibration also increases which creates difficulty for the electrons to travel inside the electric conductor. But in the case of a semiconductor as the temperature increases the number of charge carriers also increases so as there are more charge carrier resistivity decreases.
Formula used:
${R_{eq}} = {R_1} + {R_2}$
${R_{eq}}$Is the equivalent resistance, ${R_1}$and${R_2}$ are the two resistance connected in series.
$ \Rightarrow R' = R(1 + \alpha \Delta T)$
$R'$Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Complete Step-by-step answer
Let at initial temperature equivalent resistance be ${R_{eq}}$ and resistance of tungsten be ${R_1}$and resistance of germanium be${R_2}$.
Temperature coefficient of resistance for germanium be${\alpha _2}$ and temperature coefficient of resistance for tungsten be${\alpha _1}$.
Given that,
${\alpha _1} = 4.5 \times {10^{ - 3}}^\circ {C^{ - 1}}$
${\alpha _2} = - 5 \times {10^{ - 2}}^\circ {C^{ - 1}}$
As we want that after heating equivalent resistance remains the same.
Therefore equivalent resistance after heating is equal to${R_{eq}}$.
We know that,
$R' = R(1 + \alpha \Delta T)$
$R'$ Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Hence,
The resistance of tungsten and germanium after heating is ${R_1}'$and${R_2}'$ respectively.
Therefore
$ \Rightarrow {R_1}' = {R_1}(1 + {\alpha _1}\Delta T)$
$ \Rightarrow {R_2}' = {R_2}(1 + {\alpha _2}\Delta T)$
From the things we discussed above,
${R_1}' + {R_2}' = {R_1} + {R_2}$
$ \Rightarrow {R_1} + {R_2} = {R_1}(1 + {\alpha _1}\Delta T) + {R_2}(1 + {\alpha _2}\Delta T)$
$ \Rightarrow {R_1} + {R_2} = {R_1} + {R_1}{\alpha _1}\Delta T + {R_2} + {R_2}{\alpha _2}\Delta T$
$ \Rightarrow {R_1}{\alpha _1}\Delta T = - {R_2}{\alpha _2}\Delta T$
On substituting the values
${R_1}(4.5 \times {10^{ - 3}}^\circ {C^{ - 1}})\Delta T = - {R_2}( - 5 \times {10^{ - 2}}^\circ {C^{ - 1}})\Delta T$
It is given in the question that ${R_1} = 100\Omega $
$ \Rightarrow 100(4.5 \times {10^{ - 3}}) = {R_2}(5 \times {10^{ - 2}})$
$ \Rightarrow {R_2} = \dfrac{{100(4.5 \times {{10}^{ - 3}})}}{{5 \times {{10}^{ - 2}}}}$
On solving further,
${R_2} = 9\Omega $
Hence the correct answer to the question is (A) $9\Omega $
Note
Semiconductors are the material whose resistivity lies between the range of electric conductors and electric insulators. Thus they share common traits with both electric conductors and electric insulators. The negative temperature coefficient represents that the material is a semiconductor as its resistance decreases on increase in temperature.
Formula used:
${R_{eq}} = {R_1} + {R_2}$
${R_{eq}}$Is the equivalent resistance, ${R_1}$and${R_2}$ are the two resistance connected in series.
$ \Rightarrow R' = R(1 + \alpha \Delta T)$
$R'$Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Complete Step-by-step answer
Let at initial temperature equivalent resistance be ${R_{eq}}$ and resistance of tungsten be ${R_1}$and resistance of germanium be${R_2}$.
Temperature coefficient of resistance for germanium be${\alpha _2}$ and temperature coefficient of resistance for tungsten be${\alpha _1}$.
Given that,
${\alpha _1} = 4.5 \times {10^{ - 3}}^\circ {C^{ - 1}}$
${\alpha _2} = - 5 \times {10^{ - 2}}^\circ {C^{ - 1}}$
As we want that after heating equivalent resistance remains the same.
Therefore equivalent resistance after heating is equal to${R_{eq}}$.
We know that,
$R' = R(1 + \alpha \Delta T)$
$R'$ Is the new resistance after an increase in temperature,$R$ is the original resistance, $\alpha $ is the temperature coefficient of resistance, and $\Delta T$is the change in temperature.
Hence,
The resistance of tungsten and germanium after heating is ${R_1}'$and${R_2}'$ respectively.
Therefore
$ \Rightarrow {R_1}' = {R_1}(1 + {\alpha _1}\Delta T)$
$ \Rightarrow {R_2}' = {R_2}(1 + {\alpha _2}\Delta T)$
From the things we discussed above,
${R_1}' + {R_2}' = {R_1} + {R_2}$
$ \Rightarrow {R_1} + {R_2} = {R_1}(1 + {\alpha _1}\Delta T) + {R_2}(1 + {\alpha _2}\Delta T)$
$ \Rightarrow {R_1} + {R_2} = {R_1} + {R_1}{\alpha _1}\Delta T + {R_2} + {R_2}{\alpha _2}\Delta T$
$ \Rightarrow {R_1}{\alpha _1}\Delta T = - {R_2}{\alpha _2}\Delta T$
On substituting the values
${R_1}(4.5 \times {10^{ - 3}}^\circ {C^{ - 1}})\Delta T = - {R_2}( - 5 \times {10^{ - 2}}^\circ {C^{ - 1}})\Delta T$
It is given in the question that ${R_1} = 100\Omega $
$ \Rightarrow 100(4.5 \times {10^{ - 3}}) = {R_2}(5 \times {10^{ - 2}})$
$ \Rightarrow {R_2} = \dfrac{{100(4.5 \times {{10}^{ - 3}})}}{{5 \times {{10}^{ - 2}}}}$
On solving further,
${R_2} = 9\Omega $
Hence the correct answer to the question is (A) $9\Omega $
Note
Semiconductors are the material whose resistivity lies between the range of electric conductors and electric insulators. Thus they share common traits with both electric conductors and electric insulators. The negative temperature coefficient represents that the material is a semiconductor as its resistance decreases on increase in temperature.
Recently Updated Pages
JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

JEE Main 2026 Eligibility Criteria – Age Limit, Marks, Attempts, and More

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Average and RMS Value in Physics: Formula, Comparison & Application

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

