Answer
Verified
94.5k+ views
Hint: Resistance is a measure of the opposition to the current flow in an electrical circuit. It is measured in ohms, and is symbolized by the Greek letter omega. When a voltage is applied across the substance there will be an electric current through it. Resistance causes some of the electrical energy to turn into heat so some electrical energy is lost along the way. Therefore, it is sometimes useful to add components called resistors into an electrical circuit to restrict the flow of electricity and protect the components in the circuit.
Complete step-by-step answer:
Resistance of the bulb is given to us as${{R}_{b}}$
Using the formula, $P=\dfrac{{{V}^{2}}}{R}\ or\ R=\dfrac{{{V}^{2}}}{P}$
Now,
$Rb=\dfrac{{{120}^{2}}}{60}=240\Omega$
Similarly, for the heater the resistance is given as,
${R_n} = \dfrac{{{{120}^2}}}{{240}} = 60\Omega$
Now, the equivalent resistance of the bulb and heater together is given as:
$R=\dfrac{{{R}_{b}}{{R}_{n}}}{{{R}_{b}}+{{R}_{n}}}=\dfrac{240\times 60}{240+60}=48\Omega$
Before the heater was connected, the voltage drops across the bulbs
${{V}_{2}}=\dfrac{12}{{{R}_{b}}+6}\times {{R}_{b}}=\dfrac{120}{240+6}\times 240=117V$
After the heater is connected, the voltage is dropped by
${{V}_{1}}=\dfrac{120}{R+6}\times R=\dfrac{120}{48+6}\times 48=106.66V$
So, ${{V}_{2}}-{{V}_{1}}=10.04V$
Hence, the correct answer is Option D.
Note: The equivalent resistance of a network is that single resistor that we can use to replace the entire network in such a way that for a certain applied voltage V we will get the same current I as we were getting for a network. If the two resistances or impedances in parallel are equal and of the same value, then the total or equivalent resistance is given as the equal to half the value of one resistor.
It should be known to us that when resistors are connected in parallel, more current flows from the source than would flow for any of them individually, so the total resistance is lower. Each resistor in parallel has the same full voltage of the source applied to it, but divide the total current amongst them.
Complete step-by-step answer:
Resistance of the bulb is given to us as${{R}_{b}}$
Using the formula, $P=\dfrac{{{V}^{2}}}{R}\ or\ R=\dfrac{{{V}^{2}}}{P}$
Now,
$Rb=\dfrac{{{120}^{2}}}{60}=240\Omega$
Similarly, for the heater the resistance is given as,
${R_n} = \dfrac{{{{120}^2}}}{{240}} = 60\Omega$
Now, the equivalent resistance of the bulb and heater together is given as:
$R=\dfrac{{{R}_{b}}{{R}_{n}}}{{{R}_{b}}+{{R}_{n}}}=\dfrac{240\times 60}{240+60}=48\Omega$
Before the heater was connected, the voltage drops across the bulbs
${{V}_{2}}=\dfrac{12}{{{R}_{b}}+6}\times {{R}_{b}}=\dfrac{120}{240+6}\times 240=117V$
After the heater is connected, the voltage is dropped by
${{V}_{1}}=\dfrac{120}{R+6}\times R=\dfrac{120}{48+6}\times 48=106.66V$
So, ${{V}_{2}}-{{V}_{1}}=10.04V$
Hence, the correct answer is Option D.
Note: The equivalent resistance of a network is that single resistor that we can use to replace the entire network in such a way that for a certain applied voltage V we will get the same current I as we were getting for a network. If the two resistances or impedances in parallel are equal and of the same value, then the total or equivalent resistance is given as the equal to half the value of one resistor.
It should be known to us that when resistors are connected in parallel, more current flows from the source than would flow for any of them individually, so the total resistance is lower. Each resistor in parallel has the same full voltage of the source applied to it, but divide the total current amongst them.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main
The plot velocity v versus displacement x of a particle class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
There is a concentric hole of the radius R in a solid class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main