
The sum of the coefficients of the expression ${{\left( \dfrac{1}{x}+2x \right)}^{6}}$ is equal to
[a] 1024
[b] 729
[c] 243
[d] 512
[e] 64
Answer
141.9k+ views
Hint: Expand the given expression by using binomial theorem and find the coefficients of the terms involved in the expression. Calculate the sum of these coefficients to get the result. Instead of making use of binomial theorem, you can also use Pascal's triangle to get the binomial coefficients.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electron Gain Enthalpy and Electron Affinity for JEE

Physics Average Value and RMS Value JEE Main 2025
