
The sum of the coefficients of the expression ${{\left( \dfrac{1}{x}+2x \right)}^{6}}$ is equal to
[a] 1024
[b] 729
[c] 243
[d] 512
[e] 64
Answer
131.4k+ views
Hint: Expand the given expression by using binomial theorem and find the coefficients of the terms involved in the expression. Calculate the sum of these coefficients to get the result. Instead of making use of binomial theorem, you can also use Pascal's triangle to get the binomial coefficients.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

Difference Between Mutually Exclusive and Independent Events

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
