
The sum of squares of two parts of a number 100 is minimum, then two parts are:
$
\left( a \right)50,50 \\
\left( b \right)25,75 \\
\left( c \right)40,60 \\
\left( d \right)30,70 \\
$
Answer
216k+ views
Hint: Use application of derivative to find maxima and minima .For maximum and minimum point derivative of function $f'\left( x \right) = \frac{{df}}{{dx}} = 0$ and for check maxima and minima use second derivative test, $f''\left( x \right) > 0$ minima point and $f''\left( x \right) < 0$ maxima point.
Complete step-by-step answer:
Let $x$ and $y$ be two parts of 100.
So, we can write as $x + y = 100$
$ \Rightarrow y = 100 - x$
So, $x$ and $100 - x$ are two parts of 100 .
Now, according to question
$f\left( x \right) = {\left( x \right)^2} + {\left( {100 - x} \right)^2}............\left( 1 \right)$
For maxima and minima, $f'\left( x \right) = \frac{{df}}{{dx}} = 0$ .
So, Differentiate (1) equation with respect to x .
\[
f'\left( x \right) = \frac{d}{{dx}}\left( {{{\left( x \right)}^2} + {{\left( {100 - x} \right)}^2}} \right) \\
\Rightarrow f'\left( x \right) = 2x + 2\left( {100 - x} \right)\left( { - 1} \right) \\
\Rightarrow f'\left( x \right) = 4x - 200..........\left( 2 \right) \\
f'\left( x \right) = 0 \\
\Rightarrow 4x - 200 = 0 \\
\Rightarrow 4x = 200 \\
\Rightarrow x = 50 \\
\]
Now, use the second derivative test for check x=50 is a maxima or minima point .
So, Differentiate (2) equation with respect to x .
$
f''\left( x \right) = \frac{d}{{dx}}\left( {4x - 200} \right) \\
\Rightarrow f''\left( x \right) = 4 \\
$
$f''\left( x \right) > 0$ for all value of x .
Now, $f''\left( x \right) > 0$ for x=50
So, x=50 is a minimum point.
Hence the function $f\left( x \right) = {\left( x \right)^2} + {\left( {100 - x} \right)^2}$ minimum at x=50 .
So, the required parts are 50 and 50 .
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we assume the parts of a number and make a function in one variable according to the question then differentiate the function for maxima and minima then use a second derivative test to confirm the point is maxima or minima.
Complete step-by-step answer:
Let $x$ and $y$ be two parts of 100.
So, we can write as $x + y = 100$
$ \Rightarrow y = 100 - x$
So, $x$ and $100 - x$ are two parts of 100 .
Now, according to question
$f\left( x \right) = {\left( x \right)^2} + {\left( {100 - x} \right)^2}............\left( 1 \right)$
For maxima and minima, $f'\left( x \right) = \frac{{df}}{{dx}} = 0$ .
So, Differentiate (1) equation with respect to x .
\[
f'\left( x \right) = \frac{d}{{dx}}\left( {{{\left( x \right)}^2} + {{\left( {100 - x} \right)}^2}} \right) \\
\Rightarrow f'\left( x \right) = 2x + 2\left( {100 - x} \right)\left( { - 1} \right) \\
\Rightarrow f'\left( x \right) = 4x - 200..........\left( 2 \right) \\
f'\left( x \right) = 0 \\
\Rightarrow 4x - 200 = 0 \\
\Rightarrow 4x = 200 \\
\Rightarrow x = 50 \\
\]
Now, use the second derivative test for check x=50 is a maxima or minima point .
So, Differentiate (2) equation with respect to x .
$
f''\left( x \right) = \frac{d}{{dx}}\left( {4x - 200} \right) \\
\Rightarrow f''\left( x \right) = 4 \\
$
$f''\left( x \right) > 0$ for all value of x .
Now, $f''\left( x \right) > 0$ for x=50
So, x=50 is a minimum point.
Hence the function $f\left( x \right) = {\left( x \right)^2} + {\left( {100 - x} \right)^2}$ minimum at x=50 .
So, the required parts are 50 and 50 .
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we assume the parts of a number and make a function in one variable according to the question then differentiate the function for maxima and minima then use a second derivative test to confirm the point is maxima or minima.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

