The standard enthalpy of formation of $N{{H}_{3}}$is $-46kJmo{{l}^{-1}}$. If the enthalpy of formation of ${{H}_{2}}$from its atoms is $-436kJmo{{l}^{-1}}$and that of ${{N}_{2}}$is $-712kJmo{{l}^{-1}}$ the average bond enthalpy of N-N bond in $N{{H}_{3}}$is
(A) $+1056kJmo{{l}^{-1}}$
(B) $-1102kJmo{{l}^{-1}}$
(C) $-964kJmo{{l}^{-1}}$
(D) \[+352kJmo{{l}^{-1}}\]
Answer
Verified
118.8k+ views
Hint: The amount of energy needed to be supplied to break a chemical bond between two species is known as Bond Dissociation Enthalpy.
Complete step by step solution:
-We will begin solving this question by writing the chemical equation for the question-
$\dfrac{1}{2}{{N}_{2}}+\dfrac{3}{2}N{{H}_{3}}\to N{{H}_{3}}$
-The change in enthalpy during the formation of one mole of the substance from its constituent elements, with all substances in their standard states is known as the standard enthalpy of change or standard enthalpy of formation. This is represented by $\Delta H{}^\circ $.
$\Delta H{}^\circ =-\Delta H{{{}^\circ }_{f}}(N{{H}_{3}})=-(-46kJmo{{l}^{-1}})=46kJmo{{l}^{-1}}$
Also, $\Delta H{}^\circ =3\Delta {{H}_{N-N}}+\dfrac{1}{2}\Delta {{H}_{N\equiv N}}+\dfrac{3}{2}\Delta {{H}_{H-H}}...(i)$
-According to the question,
\[\Delta {{H}_{N\equiv N}}=712kJmo{{l}^{-1}}\]
$\Delta {{H}_{H-H}}=-436kJmo{{l}^{-1}}$
$\Delta H{}^\circ =46kJmo{{l}^{-1}}$
-Inserting the above values in equation (i), we will get
$46=3\Delta {{H}_{N-H}}+\dfrac{1}{2}(-712)+\dfrac{3}{2}(-436)$
$\Rightarrow \Delta {{H}_{N-H}}=\dfrac{1}{3}[1056]=+352kJmo{{l}^{-1}}$
So, the correct answer is option D.
Note: -Bond dissociation enthalpy gives the strength of the chemical bond between any two species. It is generally measured as enthalpy change at standard conditions, which is 298K.
-The bond dissociation energy of a chemical bond is frequently defined as the enthalpy change occurring through homolytic fission of the bonds at absolute zero (0K).
-For diatomic molecules, the bond dissociation enthalpy is equal to the value of bond energy.
-The strongest bond dissociation enthalpy is found to exist between the bonds between silica and fluorine. The bond dissociation energy required to break the first bond between silicon and fluorine in s silicon tetrafluoride molecule is estimated to be $166 kcalmo{{l}^{-1}}$. The high energy is due to the difference in electronegativities of the silicon and fluorine atoms.
-When considering neutral compounds, the carbon-oxygen bond in carbon monoxide is said to have the highest strength with a bond dissociation energy $257 kcalmo{{l}^{-1}}$.
-The carbon-carbon bond in the ethyne molecule is found to have a relatively high bond dissociation energy $160 kcalmo{{l}^{-1}}$.
-The weakest bond dissociation energy is said to exist between the atoms or molecules with covalent bonds.
Complete step by step solution:
-We will begin solving this question by writing the chemical equation for the question-
$\dfrac{1}{2}{{N}_{2}}+\dfrac{3}{2}N{{H}_{3}}\to N{{H}_{3}}$
-The change in enthalpy during the formation of one mole of the substance from its constituent elements, with all substances in their standard states is known as the standard enthalpy of change or standard enthalpy of formation. This is represented by $\Delta H{}^\circ $.
$\Delta H{}^\circ =-\Delta H{{{}^\circ }_{f}}(N{{H}_{3}})=-(-46kJmo{{l}^{-1}})=46kJmo{{l}^{-1}}$
Also, $\Delta H{}^\circ =3\Delta {{H}_{N-N}}+\dfrac{1}{2}\Delta {{H}_{N\equiv N}}+\dfrac{3}{2}\Delta {{H}_{H-H}}...(i)$
-According to the question,
\[\Delta {{H}_{N\equiv N}}=712kJmo{{l}^{-1}}\]
$\Delta {{H}_{H-H}}=-436kJmo{{l}^{-1}}$
$\Delta H{}^\circ =46kJmo{{l}^{-1}}$
-Inserting the above values in equation (i), we will get
$46=3\Delta {{H}_{N-H}}+\dfrac{1}{2}(-712)+\dfrac{3}{2}(-436)$
$\Rightarrow \Delta {{H}_{N-H}}=\dfrac{1}{3}[1056]=+352kJmo{{l}^{-1}}$
So, the correct answer is option D.
Note: -Bond dissociation enthalpy gives the strength of the chemical bond between any two species. It is generally measured as enthalpy change at standard conditions, which is 298K.
-The bond dissociation energy of a chemical bond is frequently defined as the enthalpy change occurring through homolytic fission of the bonds at absolute zero (0K).
-For diatomic molecules, the bond dissociation enthalpy is equal to the value of bond energy.
-The strongest bond dissociation enthalpy is found to exist between the bonds between silica and fluorine. The bond dissociation energy required to break the first bond between silicon and fluorine in s silicon tetrafluoride molecule is estimated to be $166 kcalmo{{l}^{-1}}$. The high energy is due to the difference in electronegativities of the silicon and fluorine atoms.
-When considering neutral compounds, the carbon-oxygen bond in carbon monoxide is said to have the highest strength with a bond dissociation energy $257 kcalmo{{l}^{-1}}$.
-The carbon-carbon bond in the ethyne molecule is found to have a relatively high bond dissociation energy $160 kcalmo{{l}^{-1}}$.
-The weakest bond dissociation energy is said to exist between the atoms or molecules with covalent bonds.
Recently Updated Pages
Draw the structure of a butanone molecule class 10 chemistry JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Difference Between Vapor and Gas: JEE Main 2024
Area of an Octagon Formula - Explanation, and FAQs
Difference Between Solute and Solvent: JEE Main 2024
Absolute Pressure Formula - Explanation, and FAQs
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Aqueous solution of HNO3 KOH CH3COOH CH3COONa of identical class 11 chemistry JEE_Main
Other Pages
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season