Answer
Verified
88.5k+ views
Hint We should know that tension is described as a pulling force which is transferred between the bodies in the form of axial ways. By axial ways we mean by string, a cable or a chain or it can be any one-dimensional object.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
A crystalline solid a Changes abruptly from solid to class 12 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Assertion An electron is not deflected on passing through class 12 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
The ratio of the diameters of certain air bubbles at class 11 physics JEE_Main