
The speed of a wave on a string is 150 m/s when the tension is 120 N. The percentage increase in the tension in order to raise the wave speed by 20 % is?
(A) 44 %
(B) 40 %
(C) 20 %
(D) 10 %
Answer
171.6k+ views
Hint We should know that tension is described as a pulling force which is transferred between the bodies in the form of axial ways. By axial ways we mean by string, a cable or a chain or it can be any one-dimensional object.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

CBSE Important Questions for Class 11 Physics Units and Measurement - 2025-26
