
The spatial distribution of the electric field due to two charges (A, B) is shown in figure. Which one of the following statements is correct?

(A ) is +ve and B -ve and \[\left| A \right|{\text{ }} > {\text{ }}\left| B \right|\]
(B) is +ve and B -ve and \[\left| A \right|{\text{ }} = {\text{ }}\left| B \right|\]
(C) Both are +ve but A > B
(D) Both are -ve but A > B
Answer
217.8k+ views
Hint Electric field lines originate from positive charge and settle down in negative charge. A positive and a negative charge is said to create its field around itself.
Complete step-by-step answer:
A single point charge will give out electric field lines, which move away from it till infinity. Similarly, a negative point charge will converge electric field lines coming towards it from infinity. Therefore A is a positive charge and B is a negative charge. Moving onto the second part, \[\left| A \right|\] and \[\left| B \right|\]. Magnitude of an electric charge is measured by the number of electric field lines converging or diverging from it. In our case, the number of electric field lines diverging from A is 12. Similarly for B, the number of electric field lines converging on it is also 12. Therefore, the numbers of electric field lines converging or diverging on the 2 charges are equal and hence their magnitude is also equal.
So, Option B is correct
Note Electric field lines do not form closed loops. They always end up or originate from a source of charge. Also electric field lines do not interfere. If they do, there will be 2 directions of electric field which is not possible.
Complete step-by-step answer:
A single point charge will give out electric field lines, which move away from it till infinity. Similarly, a negative point charge will converge electric field lines coming towards it from infinity. Therefore A is a positive charge and B is a negative charge. Moving onto the second part, \[\left| A \right|\] and \[\left| B \right|\]. Magnitude of an electric charge is measured by the number of electric field lines converging or diverging from it. In our case, the number of electric field lines diverging from A is 12. Similarly for B, the number of electric field lines converging on it is also 12. Therefore, the numbers of electric field lines converging or diverging on the 2 charges are equal and hence their magnitude is also equal.
So, Option B is correct
Note Electric field lines do not form closed loops. They always end up or originate from a source of charge. Also electric field lines do not interfere. If they do, there will be 2 directions of electric field which is not possible.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

