
The sound intensity level at a point 4 m from the point source is 10 dB, and then the sound level at a distance 2 m from the same source will be
(A) 26 dB
(B) 16 dB
(C) 23 dB
(D) 32 dB
Answer
154.2k+ views
Hint: The intensity of sound decreases with increase in the distance. Use this relation to combine corresponding distances and find the intensity.
Complete step-by-step solution:
The sound level intensity depends on various factors and one of them is distance from the source. Intensity level of sound (I) is inversely proportional to the square of the distance from the source(r).
$I \propto \dfrac{1}{{{r^2}}}$
From the given data:
\[{r_1} = {\text{ }}2m\]and \[{r_2} = {\text{ }}4m\]
\[{\beta _2} = {\text{ }}10{\text{ }}dB\]
Let $I_1$ and $I_2$ be the intensity at distance $r_1$ and $r_2$ respectively.
Using the above relation;
$
I \propto \dfrac{1}{{{r_1}^2}} \Rightarrow (1) \\
I \propto \dfrac{1}{{{r_2}^2}} \Rightarrow (2) \\
$
Combining equation (1) and (2), we get:
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
We know the formula for sound level intensity
$\beta = 10{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Using the above formula, Let,
$
{\beta _1} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_0}}}} \right) \Rightarrow (3) \\
{\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_0}}}} \right) \Rightarrow (4) \\
$
Subtracting equation (4) from (3)
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_2}}}} \right)$
But from the previous relation we know that
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
On substituting the relation we get,
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{r_2^2}}{{r_2^2}}} \right)$
Now substitute the given data in the above formula,
${\beta _1} - 10 = 10{\log _{10}}\left( {\dfrac{{16}}{4}} \right)$
$
{\beta _1} - 10 = 10{\log _{10}}(4) \\
{\beta _1} - 10 = 10(0.6020) \\
{\beta _1} - 10 = 6.020 \\
{\beta _1} = 16.020 \simeq 16dB \\
$
So, the sound level intensity at a distance of 2m is 16 dB and the correct option is B.
Note: Make sure that the logarithm value is natural or to the base 10 and substitute the right value.\[{I_0}\] is the minimum intensity that can be heard which is called the threshold of hearing\[ = {\text{ }}{10^{ - 12}}W{m^{ - 2}}\] at KHz.
Complete step-by-step solution:
The sound level intensity depends on various factors and one of them is distance from the source. Intensity level of sound (I) is inversely proportional to the square of the distance from the source(r).
$I \propto \dfrac{1}{{{r^2}}}$
From the given data:
\[{r_1} = {\text{ }}2m\]and \[{r_2} = {\text{ }}4m\]
\[{\beta _2} = {\text{ }}10{\text{ }}dB\]
Let $I_1$ and $I_2$ be the intensity at distance $r_1$ and $r_2$ respectively.
Using the above relation;
$
I \propto \dfrac{1}{{{r_1}^2}} \Rightarrow (1) \\
I \propto \dfrac{1}{{{r_2}^2}} \Rightarrow (2) \\
$
Combining equation (1) and (2), we get:
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
We know the formula for sound level intensity
$\beta = 10{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Using the above formula, Let,
$
{\beta _1} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_0}}}} \right) \Rightarrow (3) \\
{\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_0}}}} \right) \Rightarrow (4) \\
$
Subtracting equation (4) from (3)
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_2}}}} \right)$
But from the previous relation we know that
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
On substituting the relation we get,
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{r_2^2}}{{r_2^2}}} \right)$
Now substitute the given data in the above formula,
${\beta _1} - 10 = 10{\log _{10}}\left( {\dfrac{{16}}{4}} \right)$
$
{\beta _1} - 10 = 10{\log _{10}}(4) \\
{\beta _1} - 10 = 10(0.6020) \\
{\beta _1} - 10 = 6.020 \\
{\beta _1} = 16.020 \simeq 16dB \\
$
So, the sound level intensity at a distance of 2m is 16 dB and the correct option is B.
Note: Make sure that the logarithm value is natural or to the base 10 and substitute the right value.\[{I_0}\] is the minimum intensity that can be heard which is called the threshold of hearing\[ = {\text{ }}{10^{ - 12}}W{m^{ - 2}}\] at KHz.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
