
The sound intensity level at a point 4 m from the point source is 10 dB, and then the sound level at a distance 2 m from the same source will be
(A) 26 dB
(B) 16 dB
(C) 23 dB
(D) 32 dB
Answer
125.7k+ views
Hint: The intensity of sound decreases with increase in the distance. Use this relation to combine corresponding distances and find the intensity.
Complete step-by-step solution:
The sound level intensity depends on various factors and one of them is distance from the source. Intensity level of sound (I) is inversely proportional to the square of the distance from the source(r).
$I \propto \dfrac{1}{{{r^2}}}$
From the given data:
\[{r_1} = {\text{ }}2m\]and \[{r_2} = {\text{ }}4m\]
\[{\beta _2} = {\text{ }}10{\text{ }}dB\]
Let $I_1$ and $I_2$ be the intensity at distance $r_1$ and $r_2$ respectively.
Using the above relation;
$
I \propto \dfrac{1}{{{r_1}^2}} \Rightarrow (1) \\
I \propto \dfrac{1}{{{r_2}^2}} \Rightarrow (2) \\
$
Combining equation (1) and (2), we get:
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
We know the formula for sound level intensity
$\beta = 10{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Using the above formula, Let,
$
{\beta _1} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_0}}}} \right) \Rightarrow (3) \\
{\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_0}}}} \right) \Rightarrow (4) \\
$
Subtracting equation (4) from (3)
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_2}}}} \right)$
But from the previous relation we know that
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
On substituting the relation we get,
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{r_2^2}}{{r_2^2}}} \right)$
Now substitute the given data in the above formula,
${\beta _1} - 10 = 10{\log _{10}}\left( {\dfrac{{16}}{4}} \right)$
$
{\beta _1} - 10 = 10{\log _{10}}(4) \\
{\beta _1} - 10 = 10(0.6020) \\
{\beta _1} - 10 = 6.020 \\
{\beta _1} = 16.020 \simeq 16dB \\
$
So, the sound level intensity at a distance of 2m is 16 dB and the correct option is B.
Note: Make sure that the logarithm value is natural or to the base 10 and substitute the right value.\[{I_0}\] is the minimum intensity that can be heard which is called the threshold of hearing\[ = {\text{ }}{10^{ - 12}}W{m^{ - 2}}\] at KHz.
Complete step-by-step solution:
The sound level intensity depends on various factors and one of them is distance from the source. Intensity level of sound (I) is inversely proportional to the square of the distance from the source(r).
$I \propto \dfrac{1}{{{r^2}}}$
From the given data:
\[{r_1} = {\text{ }}2m\]and \[{r_2} = {\text{ }}4m\]
\[{\beta _2} = {\text{ }}10{\text{ }}dB\]
Let $I_1$ and $I_2$ be the intensity at distance $r_1$ and $r_2$ respectively.
Using the above relation;
$
I \propto \dfrac{1}{{{r_1}^2}} \Rightarrow (1) \\
I \propto \dfrac{1}{{{r_2}^2}} \Rightarrow (2) \\
$
Combining equation (1) and (2), we get:
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
We know the formula for sound level intensity
$\beta = 10{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Using the above formula, Let,
$
{\beta _1} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_0}}}} \right) \Rightarrow (3) \\
{\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_0}}}} \right) \Rightarrow (4) \\
$
Subtracting equation (4) from (3)
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_2}}}} \right)$
But from the previous relation we know that
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
On substituting the relation we get,
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{r_2^2}}{{r_2^2}}} \right)$
Now substitute the given data in the above formula,
${\beta _1} - 10 = 10{\log _{10}}\left( {\dfrac{{16}}{4}} \right)$
$
{\beta _1} - 10 = 10{\log _{10}}(4) \\
{\beta _1} - 10 = 10(0.6020) \\
{\beta _1} - 10 = 6.020 \\
{\beta _1} = 16.020 \simeq 16dB \\
$
So, the sound level intensity at a distance of 2m is 16 dB and the correct option is B.
Note: Make sure that the logarithm value is natural or to the base 10 and substitute the right value.\[{I_0}\] is the minimum intensity that can be heard which is called the threshold of hearing\[ = {\text{ }}{10^{ - 12}}W{m^{ - 2}}\] at KHz.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
