
The roadway bridge over a canal is in the form of an arc of a circle of radius $20\,m$. What is the maximum speed with which a car can cross the bridge without leaving the ground at the highest point?
A) $10\,m{s^{ - 1}}$
B) $12\,m{s^{ - 1}}$
C) $14\,m{s^{ - 1}}$
D) $16\,m{s^{ - 1}}$
Answer
218.7k+ views
Hint: When the object is moving in the circular path, then the acceleration due to gravity is given by the square of the velocity of the object divided by the radius of the circular path. By using this formula, the maximum velocity or the maximum speed of the car can be determined.
Useful formula:
The acceleration of the circular motion of the object is given by,
$\dfrac{{{V^2}}}{R} = g$
Where, $V$ is the velocity of the car, $R$ is the radius of the circular path and $g$ is the acceleration due to gravity.
Complete step by step solution:
Given that,
The radius of the circular path is, $R = 20\,m$
The acceleration due to gravity is, $g = 9.81\,m{s^{ - 1}}$
Now,
The acceleration of the circular motion of the object is given by,
$\dfrac{{{V^2}}}{R} = g\,.........................\left( 1 \right)$
By keeping the velocity in one side and the other terms in the other side, then the above equation (1) is written as,
${V^2} = R \times g$
By taking square root on the both sides, then the above equation is written as,
$V = \sqrt {R \times g} \,..............\left( 2 \right)$
By substituting the radius of the circular path and the acceleration due to gravity in the above equation (2), then the above equation (2) is written as,
$V = \sqrt {20 \times 9.8} $
On multiplying the above equation, then the above equation is written as,
$V = \sqrt {196} $
By taking the square root then the above equation is written as,
$V = 14\,m{s^{ - 1}}$
Thus, the above equation shows the maximum speed or velocity of the car.
Hence, the option (C) is the correct answer.
Note: From the equation (2), the velocity is directly proportional to the radius of the circular path. As the radius of the circular path increases, the velocity of the car will increase. In real time, imagine that we are driving a vehicle, if the circular path radius is less the speed also less. If the radius of the circular path is more the velocity is more.
Useful formula:
The acceleration of the circular motion of the object is given by,
$\dfrac{{{V^2}}}{R} = g$
Where, $V$ is the velocity of the car, $R$ is the radius of the circular path and $g$ is the acceleration due to gravity.
Complete step by step solution:
Given that,
The radius of the circular path is, $R = 20\,m$
The acceleration due to gravity is, $g = 9.81\,m{s^{ - 1}}$
Now,
The acceleration of the circular motion of the object is given by,
$\dfrac{{{V^2}}}{R} = g\,.........................\left( 1 \right)$
By keeping the velocity in one side and the other terms in the other side, then the above equation (1) is written as,
${V^2} = R \times g$
By taking square root on the both sides, then the above equation is written as,
$V = \sqrt {R \times g} \,..............\left( 2 \right)$
By substituting the radius of the circular path and the acceleration due to gravity in the above equation (2), then the above equation (2) is written as,
$V = \sqrt {20 \times 9.8} $
On multiplying the above equation, then the above equation is written as,
$V = \sqrt {196} $
By taking the square root then the above equation is written as,
$V = 14\,m{s^{ - 1}}$
Thus, the above equation shows the maximum speed or velocity of the car.
Hence, the option (C) is the correct answer.
Note: From the equation (2), the velocity is directly proportional to the radius of the circular path. As the radius of the circular path increases, the velocity of the car will increase. In real time, imagine that we are driving a vehicle, if the circular path radius is less the speed also less. If the radius of the circular path is more the velocity is more.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

