
The resistance of wire in a heater at room temperature is \[65\Omega \] . When the heater is connected to a 220V supply the current settles after a few seconds to 2.8A. What is the steady temperature of the wire. (Temperature coefficient of resistance \[\alpha = 1.70 \times {10^{ - 4}}^\circ {C^{ - 1}}\] )
(A) \[955^\circ C\]
(B) \[1055^\circ C\]
(C) \[1155^\circ C\]
(D) \[1258^\circ C\]
Answer
136.8k+ views
Hint: We will first find the resistance when the heater is connected to a 220V supply using the formula \[R = \dfrac{{Supply\,voltage}}{{Supply\,current}}\] .
Then we use the formula of dependence of resistance with temperature i.e. \[{R_2} = {R_1}\left[ {1 + \alpha \left( {{T_2} - {T_1}} \right)} \right]\] as the resistance vary with the temperature.
After that we will calculate the temperature by putting all the values given in the question.
Complete step by step solution
It is given resistance of wire in a heater at room temperature i.e. \[{R_1} = 65\Omega \] and temperature is given i.e. room temperature \[{T_1} = 27\;^\circ C\] .
Now when the heater is connected to a 220V supply resistance \[{R_2} = \dfrac{{Supply\,voltage}}{{Supply\,current}}\] , now we put the values as given in question.
So \[{R_2} = \dfrac{{220V}}{{2.8A}} = 78.6\Omega \]
Now, using the relation
\[{R_2} = {R_1}\left[ {1 + \alpha \left( {{T_2} - {T_1}} \right)} \right]\] , where \[{R_2}\] is the resistance at temperature \[{T_2}\] , \[{R_1}\] is the resistance at temperature \[{T_1}\] and \[\alpha = 1.70 \times {10^{ - 4}}^\circ {C^{ - 1}}\] .
we can find \[{T_2} - {T_1}\] from this equation as we know the value of \[{R_2},{R_1}\] and \[\alpha \] .
So, we solve this equation:
\[{R_2} = {R_1} + {R_1}\alpha ({T_2} - {T_1})\]
\[{T_2} - {T_1} = \dfrac{{{R_2} - {R_1}}}{{{R_1}}} \times \dfrac{1}{\alpha }\] , now we put the values and find the value of \[{T_2} - {T_1}\]
\[{T_2} - {T_1} = \dfrac{{78.6 - 65}}{{65}} \times \dfrac{1}{{1.7 \times {{10}^{ - 4}}}}\] =1231
So \[{T_2} = 1231 + {T_1}\] and we know that \[{T_1} = 27\;^\circ C\]
So, after putting value of \[{T_1}\] in \[{T_2}\] we get:
\[{T_2} = 1258\;^\circ C\] .
So, option D is correct.
Note: Always remember that we will take the temperature of room \[27\;^\circ C\] and also the formula of resistance when a conductor is connected with supply voltage.
Also remember the general rule i.e. resistivity increases with increasing temperature in conductors and decreases with increasing temperature in insulators.
Then we use the formula of dependence of resistance with temperature i.e. \[{R_2} = {R_1}\left[ {1 + \alpha \left( {{T_2} - {T_1}} \right)} \right]\] as the resistance vary with the temperature.
After that we will calculate the temperature by putting all the values given in the question.
Complete step by step solution
It is given resistance of wire in a heater at room temperature i.e. \[{R_1} = 65\Omega \] and temperature is given i.e. room temperature \[{T_1} = 27\;^\circ C\] .
Now when the heater is connected to a 220V supply resistance \[{R_2} = \dfrac{{Supply\,voltage}}{{Supply\,current}}\] , now we put the values as given in question.
So \[{R_2} = \dfrac{{220V}}{{2.8A}} = 78.6\Omega \]
Now, using the relation
\[{R_2} = {R_1}\left[ {1 + \alpha \left( {{T_2} - {T_1}} \right)} \right]\] , where \[{R_2}\] is the resistance at temperature \[{T_2}\] , \[{R_1}\] is the resistance at temperature \[{T_1}\] and \[\alpha = 1.70 \times {10^{ - 4}}^\circ {C^{ - 1}}\] .
we can find \[{T_2} - {T_1}\] from this equation as we know the value of \[{R_2},{R_1}\] and \[\alpha \] .
So, we solve this equation:
\[{R_2} = {R_1} + {R_1}\alpha ({T_2} - {T_1})\]
\[{T_2} - {T_1} = \dfrac{{{R_2} - {R_1}}}{{{R_1}}} \times \dfrac{1}{\alpha }\] , now we put the values and find the value of \[{T_2} - {T_1}\]
\[{T_2} - {T_1} = \dfrac{{78.6 - 65}}{{65}} \times \dfrac{1}{{1.7 \times {{10}^{ - 4}}}}\] =1231
So \[{T_2} = 1231 + {T_1}\] and we know that \[{T_1} = 27\;^\circ C\]
So, after putting value of \[{T_1}\] in \[{T_2}\] we get:
\[{T_2} = 1258\;^\circ C\] .
So, option D is correct.
Note: Always remember that we will take the temperature of room \[27\;^\circ C\] and also the formula of resistance when a conductor is connected with supply voltage.
Also remember the general rule i.e. resistivity increases with increasing temperature in conductors and decreases with increasing temperature in insulators.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Collision - Important Concepts and Tips for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

JEE Advanced 2024 Syllabus Weightage
