
The remainder when $1! + 2! + 3! + .... + 100!$ is divided by $240$ is
A) $153$
B) $33$
C) $73$
D) $187$
Answer
223.5k+ views
Hint: In this question, we have to use the concept of factorials. Factorial of a number $n$ is written as $n!$ . A factorial function multiplies a number by each number below it until $1$ . For example, $4! = 4 \times 3 \times 2 \times 1 = 24$ . This way we will find the terms in \[1! + 2! + 3! + .... + 100!\] that are divisible by $240$ and the terms that are not.
Complete step by step answer:
We have to find the remainder when $1! + 2! + 3! + .... + 100!$ is divided by $240$
$\dfrac{{1! + 2! + 3! + .... + 100!}}{{240}}$ …(1)
On prime factorization of $240$ , we see that:
$240 = 2 \times 2 \times 2 \times 2 \times 3 \times 5$
On rearranging the terms on the right hand side and simplifying, we get:
$240 = 2 \times 5 \times 4 \times 3 \times 2$
Now, multiply and divide the right hand side by $6$
$
\Rightarrow 240 = \dfrac{{2 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{6} \\
\Rightarrow 240 = \dfrac{{6!}}{3} \\
$
When we put this value of $240$ in (1), we get:
$
\dfrac{{1! + 2! + 3! + .... + 100!}}{{240}} = \dfrac{{1! + 2! + 3! + 4! + 5! + 6! + 7! + 8!.... + 100!}}{{\dfrac{{6!}}{3}}} \\
\Rightarrow \dfrac{{1! + 2! + 3! + .... + 100!}}{{240}} = \dfrac{{3(1! + 2! + 3! + 4! + 5! + 6! + 7 \times 6! + 8 \times 7 \times 6!.... + 100!)}}{{6!}} \\
$
In the above obtained equation, we see that every term after $6!$ can be written as a product of $6!$ and other consecutive constants, we don’t expand $100!$ as the expansion would be too big.
Further, we see that the terms before $6!$ do not contain $6!$ in their expansion, so we will separate the two series as follows:
$\dfrac{{1! + 2! + 3! + .... + 100!}}{{240}} = 3(\dfrac{{1! + 2! + 3! + 4! + 5!}}{{6!}}) + 6!(\dfrac{{1 + 7 + 8 \times 7 + ...}}{{6!}})$
Thus, we see that the second term in the right hand side of the above equation is divisible by $6!$ while the first term is not. So, $1! + 2! + 3! + 4! + 5!$ is the remainder when $1! + 2! + 3! + .... + 100!$ is divided by $240$ .
Thus, Remainder $ = 153$
The correct option is option A.
Note: We can also solve the question by simply using the information that $6! = 720 = \dfrac{{240}}{3}$ , so all the terms after $6!$ including $6!$ will be divisible by $240$ (as the terms after it will contain $6!$ in their expansion). Thus the remainder is $1! + 2! + 3! + 4! + 5! = 153$
Complete step by step answer:
We have to find the remainder when $1! + 2! + 3! + .... + 100!$ is divided by $240$
$\dfrac{{1! + 2! + 3! + .... + 100!}}{{240}}$ …(1)
On prime factorization of $240$ , we see that:
$240 = 2 \times 2 \times 2 \times 2 \times 3 \times 5$
On rearranging the terms on the right hand side and simplifying, we get:
$240 = 2 \times 5 \times 4 \times 3 \times 2$
Now, multiply and divide the right hand side by $6$
$
\Rightarrow 240 = \dfrac{{2 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{6} \\
\Rightarrow 240 = \dfrac{{6!}}{3} \\
$
When we put this value of $240$ in (1), we get:
$
\dfrac{{1! + 2! + 3! + .... + 100!}}{{240}} = \dfrac{{1! + 2! + 3! + 4! + 5! + 6! + 7! + 8!.... + 100!}}{{\dfrac{{6!}}{3}}} \\
\Rightarrow \dfrac{{1! + 2! + 3! + .... + 100!}}{{240}} = \dfrac{{3(1! + 2! + 3! + 4! + 5! + 6! + 7 \times 6! + 8 \times 7 \times 6!.... + 100!)}}{{6!}} \\
$
In the above obtained equation, we see that every term after $6!$ can be written as a product of $6!$ and other consecutive constants, we don’t expand $100!$ as the expansion would be too big.
Further, we see that the terms before $6!$ do not contain $6!$ in their expansion, so we will separate the two series as follows:
$\dfrac{{1! + 2! + 3! + .... + 100!}}{{240}} = 3(\dfrac{{1! + 2! + 3! + 4! + 5!}}{{6!}}) + 6!(\dfrac{{1 + 7 + 8 \times 7 + ...}}{{6!}})$
Thus, we see that the second term in the right hand side of the above equation is divisible by $6!$ while the first term is not. So, $1! + 2! + 3! + 4! + 5!$ is the remainder when $1! + 2! + 3! + .... + 100!$ is divided by $240$ .
Thus, Remainder $ = 153$
The correct option is option A.
Note: We can also solve the question by simply using the information that $6! = 720 = \dfrac{{240}}{3}$ , so all the terms after $6!$ including $6!$ will be divisible by $240$ (as the terms after it will contain $6!$ in their expansion). Thus the remainder is $1! + 2! + 3! + 4! + 5! = 153$
Recently Updated Pages
JEE Main 2026: Exam Dates OUT, Registration Open, Syllabus & Eligibility

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Atomic Structure for Beginners

Understanding Collisions: Types and Examples for Students

Understanding Inertial and Non-Inertial Frames of Reference

Understanding Displacement and Velocity Time Graphs

Free Radical Substitution and Its Stepwise Mechanism

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding How a Current Loop Acts as a Magnetic Dipole

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.4 - 2025-26

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Cbse Class 11 Maths Notes Chapter 9 Straight Lines

