The refractive indices of materials A, B, C and D are $1.52,\,\,1.33,\,\,1.71$ and $2.42$ respectively. The speed of light is maximum in:
A) A
B) B
C) C
D) D
Answer
Verified
115.8k+ views
Hint: To solve this question, recall what is the basic cause and meaning of refraction and refractive index respectively. Refraction happens due to the fact that the speed of light changes from medium to medium. Refraction index is nothing but the ratio of the speed of light in vacuum to the speed of light in the particular medium.
Complete step by step answer:
As we told in the hint section of the solution to this question, refraction happens due to the variance of speed in light when it changes the medium since the speed of light varies from medium to medium. In fact, refractive index is defined as the ratio of speed of light in vacuum to the speed of light in the particular medium. Mathematically, we can easily write that:
$\mu = \dfrac{c}{v}$
Where, $\mu $ is the refractive index of the medium,
$c$ is the speed of light in vacuum and,
$v$ is the speed of light in the medium.
As given in the question, for medium A, refractive index is ${\mu _A} = 1.52$
Using the above-mentioned equation, we can write:
${\mu _A} = \dfrac{c}{{{v_A}}}$
After, transposing and substituting ${\mu _A} = 1.52$ , we get:
$\Rightarrow {v_A} = \dfrac{c}{{1.52}}$
For medium B, refractive index is given as ${\mu _B} = 1.33$
Using the equation, we can write:
${\mu _B} = \dfrac{c}{{{v_B}}}$
After substituting and transposing, we get:
$\Rightarrow {v_B} = \dfrac{c}{{1.33}}$
For medium C, it is given as ${\mu _C} = 1.71$
Using the equation, we can write:
${\mu _C} = \dfrac{c}{{{v_C}}}$
After transposing and substituting, we get:
$\Rightarrow {v_C} = \dfrac{c}{{1.71}}$
Now, for medium D, it is given that ${\mu _D} = 2.42$
Using the equation, we can write:
${\mu _D} = \dfrac{c}{{{v_D}}}$
After transposing and substituting, we get:
$\Rightarrow {v_D} = \dfrac{c}{{2.42}}$
Now, we have found out the values of the velocities of all the mediums: A, B, C and D.
Let’s compare them now:
We can clearly see that the numerator part of all the velocities is exactly same and equal to the speed of light in vacuum $\left( c \right)$
As for the denominator part, we can see that the denominators of the velocities can be arranged as:
${D_D} > {D_C} > {D_A} > {D_B}$
Where, ${D_i}$ means the denominator of velocity ${v_i}$
Since, this is the order of the denominators, we can confidently say that:
${v_D} < {v_C} < {v_A} < {v_B}$
Hence, the speed of light in the medium B is the maximum, hence, option (B) is the correct answer to the question.
Note: A major error that students do is that instead of considering refractive index as the ratio of speed of light in vacuum to the speed of light in medium, they consider it to be the other way around and reach at an exact opposite answer with speed in medium B as the least and in D as the maximum. Always remember which part is the numerator part and which one is the denominator part.
Complete step by step answer:
As we told in the hint section of the solution to this question, refraction happens due to the variance of speed in light when it changes the medium since the speed of light varies from medium to medium. In fact, refractive index is defined as the ratio of speed of light in vacuum to the speed of light in the particular medium. Mathematically, we can easily write that:
$\mu = \dfrac{c}{v}$
Where, $\mu $ is the refractive index of the medium,
$c$ is the speed of light in vacuum and,
$v$ is the speed of light in the medium.
As given in the question, for medium A, refractive index is ${\mu _A} = 1.52$
Using the above-mentioned equation, we can write:
${\mu _A} = \dfrac{c}{{{v_A}}}$
After, transposing and substituting ${\mu _A} = 1.52$ , we get:
$\Rightarrow {v_A} = \dfrac{c}{{1.52}}$
For medium B, refractive index is given as ${\mu _B} = 1.33$
Using the equation, we can write:
${\mu _B} = \dfrac{c}{{{v_B}}}$
After substituting and transposing, we get:
$\Rightarrow {v_B} = \dfrac{c}{{1.33}}$
For medium C, it is given as ${\mu _C} = 1.71$
Using the equation, we can write:
${\mu _C} = \dfrac{c}{{{v_C}}}$
After transposing and substituting, we get:
$\Rightarrow {v_C} = \dfrac{c}{{1.71}}$
Now, for medium D, it is given that ${\mu _D} = 2.42$
Using the equation, we can write:
${\mu _D} = \dfrac{c}{{{v_D}}}$
After transposing and substituting, we get:
$\Rightarrow {v_D} = \dfrac{c}{{2.42}}$
Now, we have found out the values of the velocities of all the mediums: A, B, C and D.
Let’s compare them now:
We can clearly see that the numerator part of all the velocities is exactly same and equal to the speed of light in vacuum $\left( c \right)$
As for the denominator part, we can see that the denominators of the velocities can be arranged as:
${D_D} > {D_C} > {D_A} > {D_B}$
Where, ${D_i}$ means the denominator of velocity ${v_i}$
Since, this is the order of the denominators, we can confidently say that:
${v_D} < {v_C} < {v_A} < {v_B}$
Hence, the speed of light in the medium B is the maximum, hence, option (B) is the correct answer to the question.
Note: A major error that students do is that instead of considering refractive index as the ratio of speed of light in vacuum to the speed of light in medium, they consider it to be the other way around and reach at an exact opposite answer with speed in medium B as the least and in D as the maximum. Always remember which part is the numerator part and which one is the denominator part.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics