
The reagent used in dehydrohalogenation is
A.
B.
C. Alcoholic KOH
D. None of the above.
Answer
154.8k+ views
Hint: It occurs in a medium having a strong base. Thus when there is a strong base which favours elimination than substitution, then dehydrohalogenation can occur.
Complete step by step solution:
Let us try to understand Dehydrohalogenation first.
-Dehydrohalogenation is a reaction where a stronger base abstracts hydrogen followed by eliminating halogens at adjacent carbon.
-Therefore, in this reaction strong base first abstracts the hydrogen thereby collapsing the carbon beta hydrogen bonds to form double bonds followed by breaking the carbon halogen bond thereby releasing the halide in that same medium. Therefore it generally proceeds through the E2 mechanism. (where the collapse of Beta hydrogen bond and leaving of halide occurs simultaneously.
Let us understand the concept of dehydrohalogenation through some examples.
-Dehydrohalogenation can be used to obtain alkene from Alkyl halides-

-Dehydrohalogenation can be used to obtain Diene from Alkyl halides-

-Dehydration of Vic-dihalides, Gem-dihalides to form alkynes:

Here, the second step is slower as vinyl halide is resonance stabilized therefore highest temperature and stronger bases are required.
When we use alcoholic KOH is present as a reagent, the negative part of the reagent, that is it acts as a base and abstracts the hydrogen from the saturated substrate ( alkyl halide) present and transforms it to an alkene in the product, thereby undergoing elimination reaction.
Therefore, Option C is the correct option.
Additional information: Sodium amide, , in liquid ammonia as a solvent was the preferred base for many years. In some cases, is used in mineral oil. Now amide ions such as lithium diisopropylamide, LDA, is routinely used. A hot, alcoholic KOH solution or an alkoxide ion, especially potassium t-butyl alcohol, DMSO, or in THF is also commonly used to effect elimination of HX from vinyl halide. The reaction can be carried out stepwise, via the formation of a vinyl halide, or in one step, generating the alkyne directly. Thus the addition of 1,2-dibromohexane to sodium amide in liquid ammonia followed by evaporation of the solvent and aqueous workup gives 1-hexyne.

Three equivalents of is necessary for the preparation of terminal alkyne because as the alkyne forms, its acidic terminal hydrogen immediately protonates an equivalent amount of base. Because vicinal dihalides are readily available from alkenes through halogen addition and geminal dichlorides are easily available by the treatment of on aldehyde or ketone the above double dehydrogenation is a unique technique to obtain alkyne.
Note: Since elimination and substitution can both occur in the same medium therefore for dehydrohalogenation we need to provide better reagent and reaction condition for elimination to undergo dehydrohalogenation quite easily. Therefore we have to use strong bases like alcoholic KOH, , etc.
Complete step by step solution:
Let us try to understand Dehydrohalogenation first.
-Dehydrohalogenation is a reaction where a stronger base abstracts
-Therefore, in this reaction strong base first abstracts the
Let us understand the concept of dehydrohalogenation through some examples.
-Dehydrohalogenation can be used to obtain alkene from Alkyl halides-

-Dehydrohalogenation can be used to obtain Diene from Alkyl halides-

-Dehydration of Vic-dihalides, Gem-dihalides to form alkynes:

Here, the second step is slower as vinyl halide is resonance stabilized therefore highest temperature and stronger bases are required.
When we use alcoholic KOH is present as a reagent, the negative part of the reagent, that is
Therefore, Option C is the correct option.
Additional information: Sodium amide,

Three equivalents of
Note: Since elimination and substitution can both occur in the same medium therefore for dehydrohalogenation we need to provide better reagent and reaction condition for elimination to undergo dehydrohalogenation quite easily. Therefore we have to use strong bases like alcoholic KOH,
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
EMI starts from ₹3,487.34 per month
Recently Updated Pages
Difference Between Alcohol and Phenol

Classification of Drugs Based on Pharmacological Effect, Drug Action

JEE Main Mock Test Series Class 12 Chemistry for FREE

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Solutions Class 12 Notes: CBSE Chemistry Chapter 1
