Answer
Verified
87.9k+ views
Hint: To solve this question, at first determine the order of the reaction. Then use the integrated rate equation of that particular order reaction to solve the second part of the question. For a reaction $A \to $ products. This is a first-order reaction. The rate equation of the first-order reaction is \[r = {k_1}\left[ A \right]\]. Where the rate is r, the rate constant is ${k_1}$ and \[\left[ A \right]\] is the concentration of reactant A at a time t. The unit of the rate depends upon the concentration of reactant and rate constant.
Formula used:
\[[B] = \dfrac{{{{[B]}_{eq}}}}{2}. = \dfrac{{{k_1}{{[A]}_0}}}{{2({k_{1}} + {k_2})}}\] , \[{[B]_{eq}} = \dfrac{{{k_1}{{[A]}_{eq}}}}{{{k_2}}} = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}\] \[[B] = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}\;[1 - {e^{ - ({k_{1}} + {k_2})t}}]\] where \[{k_{1}}\] and \[{k_2}\] are the rate constant of forwarding and backward reaction.
Complete step by step answer:
At equilibrium, the forward and backward reaction rates become the same. As a result, the equilibrium constant can be written as the ratio of product side concentration to reactant side concentration.
For a reversible reaction at a situation when the amount of product is formed is equal to the amount of reactant is formed then it is called equilibrium. At equilibrium the amount of product and reactant becomes constant.
According to this the forward rate equation for the reaction, \[cis - Cr{\left( {en} \right)_2}\left( {OH} \right)_2^ + \rightleftharpoons {\text{ }}trans - Cr{\left( {en} \right)_2}{\left( {OH} \right)_2}^ + \]
\[{r_f} = {k_1}\left[ {cis - Cr{{\left( {en} \right)}_2}\left( {OH} \right)_2^ + } \right]\] and the backward rate is \[{r_b} = {k_2}\left[ {trans - Cr{{\left( {en} \right)}_2}\left( {OH} \right)_2^ + } \right]\]
Now, at equilibrium,
\[
\dfrac{{{{[B]}_{eq}}}}{{{{[A]}_{eq}}}} = \dfrac{{{k_1}}}{{{k_2}}} \\
{[B]_{eq}} = \dfrac{{{k_1}{{[A]}_{eq}}}}{{{k_2}}} = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}} \\
\]
Where A and B are, \[cis - Cr{\left( {en} \right)_2}\left( {OH} \right)_2^ + \] and \[trans - Cr{\left( {en} \right)_2}{\left( {OH} \right)_2}^ + \] respectively.
Now, according to the question when the concentration of B is half of the equilibrium concentration, then
\[[B] = \dfrac{{{{[B]}_{eq}}}}{2}.\]
Now, put the value of \[{[B]_{eq}} = \dfrac{{{k_1}{{[A]}_0}}}{{({k_{1}} + {k_2})}}\] in this equation we get,
\[[B] = \dfrac{{{{[B]}_{eq}}}}{2}. = \dfrac{{{k_1}{{[A]}_0}}}{{2({k_{1}} + {k_2})}}\].
Now, for reversible reaction the amount of B is
\[[B] = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}\;[1 - {e^{ - ({k_{1}} + {k_2})t}}]\]
Rearrange this equation as follows,
\[
\dfrac{{[B]}}{{\dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}}} = \;[1 - {e^{ - ({k_{1}} + {k_2})t}}] \\
\dfrac{1}{2} = \;[1 - {e^{ - ({k_{1}} + {k_2})t}}] \\
\dfrac{1}{2} - 1 = \;[ - {e^{ - ({k_{1}} + {k_2})t}}] \\
- \dfrac{1}{2} = \;[ - {e^{ - ({k_{1}} + {k_2})t}}] \\
2 = \;[{e^{({k_{1}} + {k_2})t}}] \\
\dfrac{{\ln 2}}{{({k_{1}} + {k_2}}} = t \\
\]
Now the equilibrium constant \[k = \dfrac{{{k_1}}}{{{k_2}}}\]
Now, from the given values, the value of k2 is,
\[
0.16 = \dfrac{{3.3 \times {{10}^{ - 4}}{\text{ }}{s^{ - 1}}}}{{{k_2}}} \\
{k_2} = \dfrac{{3.3 \times {{10}^{ - 4}}{\text{ }}{s^{ - 1}}}}{{0.16}} \\
{k_2} = 2.06{\text{ }}x{\text{ }}{10^{ - 3}}{\text{ }}{s^{ - 1}} \\
\]
So, it takes for half the equilibrium amount of the trans isomer to be formed is,
\[
\dfrac{{\ln 2}}{{({k_{1}} + {k_2})}} = t \\
\dfrac{{\ln 2}}{{(3.3{\text{ }}x{\text{ }}{{10}^{ - 4}} + 2.06{\text{ }}x{\text{ }}{{10}^{ - 3}})}} = t \\
\dfrac{{\ln 2 \times {{10}^3}}}{{(0.33 + 2.06{\text{ }})}} = t \\
0.289 \times {10^3} = t \\
289\sec = t \\
4.83\min = t \\
\]
So, the correct answer is, A.
Note:
The rate of a reaction can be expressed in terms of concentration of reactants or products. The magnitude of the rate value does not depend upon the way of expression ( by reactant or product). For reactants, the rate shows as negative as throughout the reaction the concentration of the reactant decreases. On the other hand, the rate for the product shows as positive as the concentration of the product increases throughout the reaction.
Formula used:
\[[B] = \dfrac{{{{[B]}_{eq}}}}{2}. = \dfrac{{{k_1}{{[A]}_0}}}{{2({k_{1}} + {k_2})}}\] , \[{[B]_{eq}} = \dfrac{{{k_1}{{[A]}_{eq}}}}{{{k_2}}} = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}\] \[[B] = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}\;[1 - {e^{ - ({k_{1}} + {k_2})t}}]\] where \[{k_{1}}\] and \[{k_2}\] are the rate constant of forwarding and backward reaction.
Complete step by step answer:
At equilibrium, the forward and backward reaction rates become the same. As a result, the equilibrium constant can be written as the ratio of product side concentration to reactant side concentration.
For a reversible reaction at a situation when the amount of product is formed is equal to the amount of reactant is formed then it is called equilibrium. At equilibrium the amount of product and reactant becomes constant.
According to this the forward rate equation for the reaction, \[cis - Cr{\left( {en} \right)_2}\left( {OH} \right)_2^ + \rightleftharpoons {\text{ }}trans - Cr{\left( {en} \right)_2}{\left( {OH} \right)_2}^ + \]
\[{r_f} = {k_1}\left[ {cis - Cr{{\left( {en} \right)}_2}\left( {OH} \right)_2^ + } \right]\] and the backward rate is \[{r_b} = {k_2}\left[ {trans - Cr{{\left( {en} \right)}_2}\left( {OH} \right)_2^ + } \right]\]
Now, at equilibrium,
\[
\dfrac{{{{[B]}_{eq}}}}{{{{[A]}_{eq}}}} = \dfrac{{{k_1}}}{{{k_2}}} \\
{[B]_{eq}} = \dfrac{{{k_1}{{[A]}_{eq}}}}{{{k_2}}} = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}} \\
\]
Where A and B are, \[cis - Cr{\left( {en} \right)_2}\left( {OH} \right)_2^ + \] and \[trans - Cr{\left( {en} \right)_2}{\left( {OH} \right)_2}^ + \] respectively.
Now, according to the question when the concentration of B is half of the equilibrium concentration, then
\[[B] = \dfrac{{{{[B]}_{eq}}}}{2}.\]
Now, put the value of \[{[B]_{eq}} = \dfrac{{{k_1}{{[A]}_0}}}{{({k_{1}} + {k_2})}}\] in this equation we get,
\[[B] = \dfrac{{{{[B]}_{eq}}}}{2}. = \dfrac{{{k_1}{{[A]}_0}}}{{2({k_{1}} + {k_2})}}\].
Now, for reversible reaction the amount of B is
\[[B] = \dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}\;[1 - {e^{ - ({k_{1}} + {k_2})t}}]\]
Rearrange this equation as follows,
\[
\dfrac{{[B]}}{{\dfrac{{{k_1}{{[A]}_0}}}{{{k_{1}} + {k_2}}}}} = \;[1 - {e^{ - ({k_{1}} + {k_2})t}}] \\
\dfrac{1}{2} = \;[1 - {e^{ - ({k_{1}} + {k_2})t}}] \\
\dfrac{1}{2} - 1 = \;[ - {e^{ - ({k_{1}} + {k_2})t}}] \\
- \dfrac{1}{2} = \;[ - {e^{ - ({k_{1}} + {k_2})t}}] \\
2 = \;[{e^{({k_{1}} + {k_2})t}}] \\
\dfrac{{\ln 2}}{{({k_{1}} + {k_2}}} = t \\
\]
Now the equilibrium constant \[k = \dfrac{{{k_1}}}{{{k_2}}}\]
Now, from the given values, the value of k2 is,
\[
0.16 = \dfrac{{3.3 \times {{10}^{ - 4}}{\text{ }}{s^{ - 1}}}}{{{k_2}}} \\
{k_2} = \dfrac{{3.3 \times {{10}^{ - 4}}{\text{ }}{s^{ - 1}}}}{{0.16}} \\
{k_2} = 2.06{\text{ }}x{\text{ }}{10^{ - 3}}{\text{ }}{s^{ - 1}} \\
\]
So, it takes for half the equilibrium amount of the trans isomer to be formed is,
\[
\dfrac{{\ln 2}}{{({k_{1}} + {k_2})}} = t \\
\dfrac{{\ln 2}}{{(3.3{\text{ }}x{\text{ }}{{10}^{ - 4}} + 2.06{\text{ }}x{\text{ }}{{10}^{ - 3}})}} = t \\
\dfrac{{\ln 2 \times {{10}^3}}}{{(0.33 + 2.06{\text{ }})}} = t \\
0.289 \times {10^3} = t \\
289\sec = t \\
4.83\min = t \\
\]
So, the correct answer is, A.
Note:
The rate of a reaction can be expressed in terms of concentration of reactants or products. The magnitude of the rate value does not depend upon the way of expression ( by reactant or product). For reactants, the rate shows as negative as throughout the reaction the concentration of the reactant decreases. On the other hand, the rate for the product shows as positive as the concentration of the product increases throughout the reaction.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main