
The reaction, $$2S{O_{2(g)}} + {O_{2(g)}} \rightleftharpoons 2S{O_{3(g)}}$$ is carried out in a 1 $$d{m^3}$$ vessel and 2 $$d{m^3}$$ vessel respectively. The ratio of reaction velocities will be…
(A) 1 : 4
(B) 2 : 4
(C) 1 : 8
(D) 8 : 1
Answer
140.1k+ views
Hint: As volume of any gas gets changed, it also affects its concentration. Rate of reaction and velocity of reaction are both the same. The formula of rate of reaction of this reaction is
$${\text{Rate of reaction = k}}{\left[ {S{O_{2(g)}}} \right]^2}\left[ {{O_{2(g)}}} \right]$$.
Complete Step-by-Step Solution:
Here, two different conditions are given in the question in which reaction is carried out in vessels having different volumes. We know that concentration of any gaseous species depends on the volume of the vessel as well. So, as this reaction is happening in two vessels having different volumes, the concentration of the products and reactants will not be the same.
Let’s find out the relation between velocities of reaction in two different vessels.
We know that for given reaction,
$${\text{Rate of reaction = k}}{\left[ {S{O_{2(g)}}} \right]^2}\left[ {{O_{2(g)}}} \right]$$
Now, if we consider concentration of $$S{O_{2(g)}}$$ in 1$$d{m^3}$$ vessel as x, then concentration of $$S{O_{2(g)}}$$ in 2 $$d{m^3}$$ vessel will be $$\dfrac{x}{2}$$ because as volume of any gas gets doubled, the concentration gets halved.
Same way, suppose concentration of $${O_{2(g)}}$$ in 1$$d{m^3}$$ vessel is equal to y, then concentration of $${O_{2(g)}}$$ in 2 $$d{m^3}$$ vessel will be $$\dfrac{y}{2}$$. Now putting these concentration values in the rate of reaction equation, we get two new equations as follows. Suppose vessel having 1$$d{m^3}$$ volume as vessel-1 and other vessel as vessel-2
For Vessel-1, $${\text{Rate of reaction = k}}{\left[ x \right]^2}\left[ y \right]$$……………..(1)
For Vessel-2, $${\text{Rate of reaction = k}}{\left[ {\dfrac{x}{2}} \right]^2}\left[ {\dfrac{y}{2}} \right]$$……………….(2)
Dividing equation (1) and (2), we get
$$\dfrac{{{\text{Rate of reaction of vessel - 1}}}}{{{\text{Rate of reaction of vessel - 2}}}} = \dfrac{{{\text{k}}{{\left[ x \right]}^2}\left[ y \right]}}{{{\text{k}}{{\left[ {\dfrac{x}{2}} \right]}^2}\left[ {\dfrac{y}{2}} \right]}}$$
$$\dfrac{{{\text{Rate of reaction of vessel - 1}}}}{{{\text{Rate of reaction of vessel - 2}}}} = \dfrac{{{x^2}y}}{{\dfrac{{{x^2}y}}{8}}}$$
$$\dfrac{{{\text{Rate of reaction of vessel - 1}}}}{{{\text{Rate of reaction of vessel - 2}}}} = \dfrac{8}{1}$$
So, correct answer is (D) 8 : 1
Additional Information:
-When these types of ratios of rate of reactions are being asked, we can simply put supposed values of concentration into the equation of rate of reaction and have the correct ratio.
- Reaction rate is a measure of increase in concentration of products or decrease in concentration of reactants per unit time.
Note: Make sure that numerator and denominator are respectively true in case of the questions in which the ratio is asked. Do not forget that there are two molecules of $$S{O_{2(g)}}$$ that are involved in a single reaction, so the rate of reaction will have an effect on that number.
$${\text{Rate of reaction = k}}{\left[ {S{O_{2(g)}}} \right]^2}\left[ {{O_{2(g)}}} \right]$$.
Complete Step-by-Step Solution:
Here, two different conditions are given in the question in which reaction is carried out in vessels having different volumes. We know that concentration of any gaseous species depends on the volume of the vessel as well. So, as this reaction is happening in two vessels having different volumes, the concentration of the products and reactants will not be the same.
Let’s find out the relation between velocities of reaction in two different vessels.
We know that for given reaction,
$${\text{Rate of reaction = k}}{\left[ {S{O_{2(g)}}} \right]^2}\left[ {{O_{2(g)}}} \right]$$
Now, if we consider concentration of $$S{O_{2(g)}}$$ in 1$$d{m^3}$$ vessel as x, then concentration of $$S{O_{2(g)}}$$ in 2 $$d{m^3}$$ vessel will be $$\dfrac{x}{2}$$ because as volume of any gas gets doubled, the concentration gets halved.
Same way, suppose concentration of $${O_{2(g)}}$$ in 1$$d{m^3}$$ vessel is equal to y, then concentration of $${O_{2(g)}}$$ in 2 $$d{m^3}$$ vessel will be $$\dfrac{y}{2}$$. Now putting these concentration values in the rate of reaction equation, we get two new equations as follows. Suppose vessel having 1$$d{m^3}$$ volume as vessel-1 and other vessel as vessel-2
For Vessel-1, $${\text{Rate of reaction = k}}{\left[ x \right]^2}\left[ y \right]$$……………..(1)
For Vessel-2, $${\text{Rate of reaction = k}}{\left[ {\dfrac{x}{2}} \right]^2}\left[ {\dfrac{y}{2}} \right]$$……………….(2)
Dividing equation (1) and (2), we get
$$\dfrac{{{\text{Rate of reaction of vessel - 1}}}}{{{\text{Rate of reaction of vessel - 2}}}} = \dfrac{{{\text{k}}{{\left[ x \right]}^2}\left[ y \right]}}{{{\text{k}}{{\left[ {\dfrac{x}{2}} \right]}^2}\left[ {\dfrac{y}{2}} \right]}}$$
$$\dfrac{{{\text{Rate of reaction of vessel - 1}}}}{{{\text{Rate of reaction of vessel - 2}}}} = \dfrac{{{x^2}y}}{{\dfrac{{{x^2}y}}{8}}}$$
$$\dfrac{{{\text{Rate of reaction of vessel - 1}}}}{{{\text{Rate of reaction of vessel - 2}}}} = \dfrac{8}{1}$$
So, correct answer is (D) 8 : 1
Additional Information:
-When these types of ratios of rate of reactions are being asked, we can simply put supposed values of concentration into the equation of rate of reaction and have the correct ratio.
- Reaction rate is a measure of increase in concentration of products or decrease in concentration of reactants per unit time.
Note: Make sure that numerator and denominator are respectively true in case of the questions in which the ratio is asked. Do not forget that there are two molecules of $$S{O_{2(g)}}$$ that are involved in a single reaction, so the rate of reaction will have an effect on that number.
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
