
The reactance of a capacitor connected with D.C. voltage is?
(A) Zero
(B) Infinity
(C)$1\Omega $
(D) None of these
Answer
232.8k+ views
Hint The frequency of a circuit is the number of times current changes its direction in a second. For a D.C. voltage circuit frequency of the circuit is zero as the direction of flow of electrons i.e. current always remains the same but for an A.C. circuit, the frequency of the circuit is not zero as the direction of current keeps changing.
Formula used
${X_c} = \dfrac{1}{{\omega C}}$
$\omega = 2\pi f$
Where$\omega $ is the angular frequency of the circuit, ${X_c}$is the capacitive reactance of the circuit, $C$is the capacitance of the capacitor,$f$ if the frequency of the circuit.
Complete Step-by-step solution
We know that,
The frequency of a circuit is the number of times current changes its direction in a second.
${X_c} = \dfrac{1}{{\omega C}}$
$\omega = 2\pi f$
Where$\omega $ is the angular frequency of the circuit, ${X_c}$is the capacitive reactance of the circuit, $C$is the capacitance of the capacitor,$f$ if the frequency of the circuit.
$ \Rightarrow {X_c} = \dfrac{1}{{2\pi fC}}$
As for a D.C. voltage circuit frequency of the circuit is zero as the direction of flow of electrons.
$ \Rightarrow f = 0Hz$
$ \Rightarrow {X_c} = \dfrac{1}{{2\pi \times 0 \times C}}$
$ \Rightarrow {X_c} = \infty \Omega $
Hence the correct answer to the above question is (B) Infinity.
Additional information
Like in the A.C. circuit the resistance provided by a capacitor is called capacitive reactance or reactance of a capacitor. Similarly, the resistance provided by the inductor is called inductive reactance or reactance of an inductor.
Note
If the circuit would have been an alternating current circuit i.e. an A.C. circuit then the circuit would have a non-zero frequency. Then in such a case, we have to enter the given values of capacitance and frequency and calculate the capacitive reactance of the circuit. The S.I unit of capacitive reactance is also ohms.
Formula used
${X_c} = \dfrac{1}{{\omega C}}$
$\omega = 2\pi f$
Where$\omega $ is the angular frequency of the circuit, ${X_c}$is the capacitive reactance of the circuit, $C$is the capacitance of the capacitor,$f$ if the frequency of the circuit.
Complete Step-by-step solution
We know that,
The frequency of a circuit is the number of times current changes its direction in a second.
${X_c} = \dfrac{1}{{\omega C}}$
$\omega = 2\pi f$
Where$\omega $ is the angular frequency of the circuit, ${X_c}$is the capacitive reactance of the circuit, $C$is the capacitance of the capacitor,$f$ if the frequency of the circuit.
$ \Rightarrow {X_c} = \dfrac{1}{{2\pi fC}}$
As for a D.C. voltage circuit frequency of the circuit is zero as the direction of flow of electrons.
$ \Rightarrow f = 0Hz$
$ \Rightarrow {X_c} = \dfrac{1}{{2\pi \times 0 \times C}}$
$ \Rightarrow {X_c} = \infty \Omega $
Hence the correct answer to the above question is (B) Infinity.
Additional information
Like in the A.C. circuit the resistance provided by a capacitor is called capacitive reactance or reactance of a capacitor. Similarly, the resistance provided by the inductor is called inductive reactance or reactance of an inductor.
Note
If the circuit would have been an alternating current circuit i.e. an A.C. circuit then the circuit would have a non-zero frequency. Then in such a case, we have to enter the given values of capacitance and frequency and calculate the capacitive reactance of the circuit. The S.I unit of capacitive reactance is also ohms.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

Understanding Collisions: Types and Examples for Students

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

Highest T20 Scores in Cricket: Top Records & Stats 2025

