
The ratio of intensities between two coherent sound sources is 4:1.The difference of loudness in dB between maximum and minimum intensities when they interfere in space is
(A) 10 log(2)
(B) 20 log(3)
(C) 10 log(3)
(D) 20 log(2)
Answer
219.9k+ views
Hint Loudness is nothing but a comparison of intensity on a logarithmic scale, while intensity is proportional to square of the amplitude of the wave (be it sound or be it light)
Complete step-by-step solution
When 2 sound waves interfere, they form a range of intensities because of the interference pattern. In this question we need to find the range of those values which is the difference in max and min volume. The maximum intensity is given by
\[I = {\text{ }}{I_1} + {I_2} + 2\sqrt {{I_1}{I_2}\cos \alpha } \]
So max intensity is obtained when \[\cos (\alpha ) = \max = 1\]
\[ \Rightarrow {I_{\max }} = {(\sqrt {{I_1}} + \sqrt {{I_2}} )^2}\]
As the 2 intensities are in ratio of 4:1, for some arbitrary constant of proportionality (\[{\text{x}}\]) let’s say:
\[{I_1} = 4x\] , \[{I_2} = x\]
\[{I_{\max }} = {(\sqrt {4x} + \sqrt x )^2}\]
\[{I_{\max }} = {(2\sqrt x + \sqrt x )^2}\]
\[{I_{\max }} = 9x\]
And the minimum intensity is given by when \[\cos (\alpha ) = \min = - 1\]
\[{I_{\min }} = {\text{ }}{I_1} + {I_2} - 2\sqrt {{I_1}{I_2}\cos \alpha } \]
\[
{I_{\min }} = {(\sqrt {{I_1}} - \sqrt {{I_2}} )^2} \\
\Rightarrow {I_{\min }} = {(\sqrt {4x} - \sqrt x )^2} \\
\Rightarrow {I_{\min }} = {(2\sqrt x - \sqrt x )^2} \\
\Rightarrow {I_{\min }} = x \\
\]
The difference is these 2 values will give us the correct option
\[{I_{\max }} - {I_{\min }} = {\text{ }}9x - x{\text{ }} = {\text{ }}8x\]
Therefore the correct answer is option B.
Note The intensity of light waves are related to amplitude by this relation,
$
\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} = \dfrac{{{a_1}}}{{{a_2}}} = \left( {\dfrac{{\sqrt {\dfrac{{{I_{\max }}}}{{{I_{\min }}}}} + 1}}{{\sqrt {\dfrac{{{I_{\max }}}}{{{I_{\min }}}}} - 1}}} \right) \\
\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = \left( {\dfrac{{{a_1} + {a_2}}}{{{a_1} - {a_2}}}} \right) \\
$
Complete step-by-step solution
When 2 sound waves interfere, they form a range of intensities because of the interference pattern. In this question we need to find the range of those values which is the difference in max and min volume. The maximum intensity is given by
\[I = {\text{ }}{I_1} + {I_2} + 2\sqrt {{I_1}{I_2}\cos \alpha } \]
So max intensity is obtained when \[\cos (\alpha ) = \max = 1\]
\[ \Rightarrow {I_{\max }} = {(\sqrt {{I_1}} + \sqrt {{I_2}} )^2}\]
As the 2 intensities are in ratio of 4:1, for some arbitrary constant of proportionality (\[{\text{x}}\]) let’s say:
\[{I_1} = 4x\] , \[{I_2} = x\]
\[{I_{\max }} = {(\sqrt {4x} + \sqrt x )^2}\]
\[{I_{\max }} = {(2\sqrt x + \sqrt x )^2}\]
\[{I_{\max }} = 9x\]
And the minimum intensity is given by when \[\cos (\alpha ) = \min = - 1\]
\[{I_{\min }} = {\text{ }}{I_1} + {I_2} - 2\sqrt {{I_1}{I_2}\cos \alpha } \]
\[
{I_{\min }} = {(\sqrt {{I_1}} - \sqrt {{I_2}} )^2} \\
\Rightarrow {I_{\min }} = {(\sqrt {4x} - \sqrt x )^2} \\
\Rightarrow {I_{\min }} = {(2\sqrt x - \sqrt x )^2} \\
\Rightarrow {I_{\min }} = x \\
\]
The difference is these 2 values will give us the correct option
\[{I_{\max }} - {I_{\min }} = {\text{ }}9x - x{\text{ }} = {\text{ }}8x\]
Therefore the correct answer is option B.
Note The intensity of light waves are related to amplitude by this relation,
$
\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} = \dfrac{{{a_1}}}{{{a_2}}} = \left( {\dfrac{{\sqrt {\dfrac{{{I_{\max }}}}{{{I_{\min }}}}} + 1}}{{\sqrt {\dfrac{{{I_{\max }}}}{{{I_{\min }}}}} - 1}}} \right) \\
\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = \left( {\dfrac{{{a_1} + {a_2}}}{{{a_1} - {a_2}}}} \right) \\
$
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

