
The ratio of escape velocity at earth ${v_e}$ to the escape velocity at a planet ${v_p}$ whose radius and mean density are twice as that of earth is:
(A) $1:4$
(B) $1:\sqrt 2 $
(C) $1:2$
(D) $1:2\sqrt 2 $
Answer
145.5k+ views
Hint: From the question we can see that the radius and mean density of the planet is given. We can use it to calculate escape velocity of both earth and the planet.
Formula Used:
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\]
Complete step by step answer:
As the name suggests, escape velocity is an initial velocity at which, a body when thrown will leave the gravitational field of earth and never come back and its formula is
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\] where G is the gravitational constant, ${M_e},{R_e}$ are the mass and radius of earth
Since density is given, we can write mass as the product of volume and density
Hence $M = V\rho = \dfrac{{4\pi {R^3}}}{3}\rho $ (the shape of earth and planet is spherical)
V is the volume and $\rho $ is the density, now put it in the escape velocity equation,
$v = \sqrt {\dfrac{{2G \times 4\pi {R^3} \times \rho }}{{3R}}} = \sqrt {\dfrac{{2G \times 4\pi {R^2} \times \rho }}{3}} $
Escape velocity of earth${v_e} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} $
Similarly escape velocity of planet ${v_p} = \sqrt {\dfrac{{2G \times 4\pi {R_p}^2 \times {\rho _p}}}{3}} $
The ratio is \[\dfrac{{{v_e}}}{{{v_p}}} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{{{R_e}}}{{{R_p}}}\sqrt {\dfrac{{{\rho _e}}}{{{\rho _p}}}} \]
Since it is given in the question that the radius and mean density of planet is two times to that of earth
Putting this value in above equation, it becomes
\[\dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{2}\sqrt {\dfrac{1}{2}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{{2\sqrt 2 }}\]
Hence, the correct option is D
Additional information:
Mathematically, gravitational constant is the force of attraction of two particles which are of unit mass and are kept at a distance of a unit. It is not affected by the presence of any other body or medium. It is the same in every condition. The SI unit of G is \[N{m^2}k{g^{ - 2}}\]
Note:
The escape velocity of smaller planets like mars, is less and there is no atmosphere and bigger planets like Jupiter, Saturn have very large escape velocity hence they have denser atmospheres in these planets.
Formula Used:
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\]
Complete step by step answer:
As the name suggests, escape velocity is an initial velocity at which, a body when thrown will leave the gravitational field of earth and never come back and its formula is
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\] where G is the gravitational constant, ${M_e},{R_e}$ are the mass and radius of earth
Since density is given, we can write mass as the product of volume and density
Hence $M = V\rho = \dfrac{{4\pi {R^3}}}{3}\rho $ (the shape of earth and planet is spherical)
V is the volume and $\rho $ is the density, now put it in the escape velocity equation,
$v = \sqrt {\dfrac{{2G \times 4\pi {R^3} \times \rho }}{{3R}}} = \sqrt {\dfrac{{2G \times 4\pi {R^2} \times \rho }}{3}} $
Escape velocity of earth${v_e} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} $
Similarly escape velocity of planet ${v_p} = \sqrt {\dfrac{{2G \times 4\pi {R_p}^2 \times {\rho _p}}}{3}} $
The ratio is \[\dfrac{{{v_e}}}{{{v_p}}} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{{{R_e}}}{{{R_p}}}\sqrt {\dfrac{{{\rho _e}}}{{{\rho _p}}}} \]
Since it is given in the question that the radius and mean density of planet is two times to that of earth
Putting this value in above equation, it becomes
\[\dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{2}\sqrt {\dfrac{1}{2}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{{2\sqrt 2 }}\]
Hence, the correct option is D
Additional information:
Mathematically, gravitational constant is the force of attraction of two particles which are of unit mass and are kept at a distance of a unit. It is not affected by the presence of any other body or medium. It is the same in every condition. The SI unit of G is \[N{m^2}k{g^{ - 2}}\]
Note:
The escape velocity of smaller planets like mars, is less and there is no atmosphere and bigger planets like Jupiter, Saturn have very large escape velocity hence they have denser atmospheres in these planets.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
