
The ratio of escape velocity at earth ${v_e}$ to the escape velocity at a planet ${v_p}$ whose radius and mean density are twice as that of earth is:
(A) $1:4$
(B) $1:\sqrt 2 $
(C) $1:2$
(D) $1:2\sqrt 2 $
Answer
233.1k+ views
Hint: From the question we can see that the radius and mean density of the planet is given. We can use it to calculate escape velocity of both earth and the planet.
Formula Used:
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\]
Complete step by step answer:
As the name suggests, escape velocity is an initial velocity at which, a body when thrown will leave the gravitational field of earth and never come back and its formula is
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\] where G is the gravitational constant, ${M_e},{R_e}$ are the mass and radius of earth
Since density is given, we can write mass as the product of volume and density
Hence $M = V\rho = \dfrac{{4\pi {R^3}}}{3}\rho $ (the shape of earth and planet is spherical)
V is the volume and $\rho $ is the density, now put it in the escape velocity equation,
$v = \sqrt {\dfrac{{2G \times 4\pi {R^3} \times \rho }}{{3R}}} = \sqrt {\dfrac{{2G \times 4\pi {R^2} \times \rho }}{3}} $
Escape velocity of earth${v_e} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} $
Similarly escape velocity of planet ${v_p} = \sqrt {\dfrac{{2G \times 4\pi {R_p}^2 \times {\rho _p}}}{3}} $
The ratio is \[\dfrac{{{v_e}}}{{{v_p}}} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{{{R_e}}}{{{R_p}}}\sqrt {\dfrac{{{\rho _e}}}{{{\rho _p}}}} \]
Since it is given in the question that the radius and mean density of planet is two times to that of earth
Putting this value in above equation, it becomes
\[\dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{2}\sqrt {\dfrac{1}{2}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{{2\sqrt 2 }}\]
Hence, the correct option is D
Additional information:
Mathematically, gravitational constant is the force of attraction of two particles which are of unit mass and are kept at a distance of a unit. It is not affected by the presence of any other body or medium. It is the same in every condition. The SI unit of G is \[N{m^2}k{g^{ - 2}}\]
Note:
The escape velocity of smaller planets like mars, is less and there is no atmosphere and bigger planets like Jupiter, Saturn have very large escape velocity hence they have denser atmospheres in these planets.
Formula Used:
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\]
Complete step by step answer:
As the name suggests, escape velocity is an initial velocity at which, a body when thrown will leave the gravitational field of earth and never come back and its formula is
${v_e} = \sqrt {\dfrac{{2G{M_e}}}{{{R_e}}}} $\[\] where G is the gravitational constant, ${M_e},{R_e}$ are the mass and radius of earth
Since density is given, we can write mass as the product of volume and density
Hence $M = V\rho = \dfrac{{4\pi {R^3}}}{3}\rho $ (the shape of earth and planet is spherical)
V is the volume and $\rho $ is the density, now put it in the escape velocity equation,
$v = \sqrt {\dfrac{{2G \times 4\pi {R^3} \times \rho }}{{3R}}} = \sqrt {\dfrac{{2G \times 4\pi {R^2} \times \rho }}{3}} $
Escape velocity of earth${v_e} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} $
Similarly escape velocity of planet ${v_p} = \sqrt {\dfrac{{2G \times 4\pi {R_p}^2 \times {\rho _p}}}{3}} $
The ratio is \[\dfrac{{{v_e}}}{{{v_p}}} = \sqrt {\dfrac{{2G \times 4\pi {R_e}^2 \times {\rho _e}}}{3}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{{{R_e}}}{{{R_p}}}\sqrt {\dfrac{{{\rho _e}}}{{{\rho _p}}}} \]
Since it is given in the question that the radius and mean density of planet is two times to that of earth
Putting this value in above equation, it becomes
\[\dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{2}\sqrt {\dfrac{1}{2}} \Rightarrow \dfrac{{{v_e}}}{{{v_p}}} = \dfrac{1}{{2\sqrt 2 }}\]
Hence, the correct option is D
Additional information:
Mathematically, gravitational constant is the force of attraction of two particles which are of unit mass and are kept at a distance of a unit. It is not affected by the presence of any other body or medium. It is the same in every condition. The SI unit of G is \[N{m^2}k{g^{ - 2}}\]
Note:
The escape velocity of smaller planets like mars, is less and there is no atmosphere and bigger planets like Jupiter, Saturn have very large escape velocity hence they have denser atmospheres in these planets.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

