
The ratio of diffusion of hydrogen and helium gas is :
A. $1:1.4$
B. $1:1$
C. $1.4:1$
D. $1:2$
Answer
135.9k+ views
Hint: We know that Graham’s Law of diffusion states that rate of diffusion or effusion of gas is inversely proportional to the square root of the molar mass. If $r$ is rate of diffusion of a gas and $M$ is its molecular mass so this law mathematically can be represented as ; $r \propto \dfrac{1}{M}$ . It can also be used to determine the molecular mass of a gas if one gas is known.
Complete step by step solution:
Let the rate of diffusion of hydrogen gas be ${r_1}$ and the rate of diffusion of helium be ${r_2}$. We know that the ratio of the rate of diffusion of a gas is inversely proportional to the square root of the molar mass. Hence the ratio of rate of diffusion of hydrogen gas to helium gas will be; $\dfrac{{{r_1}}}{{{r_2}}} = \sqrt {\dfrac{{{m_2}}}{{{m_1}}}} $ , where ${m_1},{m_2}$ is the molar mass of hydrogen and helium respectively. (molar mass of hydrogen gas $ = 2$,molar mass of helium gas $ = 4$) .We know that hydrogen gas is found as a diatomic molecule while helium is an inert gas which exists as atomic helium.
Thus the ratio of diffusion,
$ \Rightarrow \dfrac{{{r_1}}}{{{r_2}}} = \sqrt {\dfrac{4}{2}} = \sqrt 2 $
$ \Rightarrow \dfrac{{{r_1}}}{{{r_2}}} = 1.41$
So the ratio of the rate of diffusion of hydrogen gas and helium gas is $1.4:1$ ,hence option C is the correct answer to this problem.
Note: We have approached this problem with the help of Graham’s Law of effusion of gases. Graham’s law is most accurate for the calculation of diffusion of gases which involves the movement of one gas at a time through a hole. It also provides a basis for the separation of isotopes by diffusion.
Complete step by step solution:
Let the rate of diffusion of hydrogen gas be ${r_1}$ and the rate of diffusion of helium be ${r_2}$. We know that the ratio of the rate of diffusion of a gas is inversely proportional to the square root of the molar mass. Hence the ratio of rate of diffusion of hydrogen gas to helium gas will be; $\dfrac{{{r_1}}}{{{r_2}}} = \sqrt {\dfrac{{{m_2}}}{{{m_1}}}} $ , where ${m_1},{m_2}$ is the molar mass of hydrogen and helium respectively. (molar mass of hydrogen gas $ = 2$,molar mass of helium gas $ = 4$) .We know that hydrogen gas is found as a diatomic molecule while helium is an inert gas which exists as atomic helium.
Thus the ratio of diffusion,
$ \Rightarrow \dfrac{{{r_1}}}{{{r_2}}} = \sqrt {\dfrac{4}{2}} = \sqrt 2 $
$ \Rightarrow \dfrac{{{r_1}}}{{{r_2}}} = 1.41$
So the ratio of the rate of diffusion of hydrogen gas and helium gas is $1.4:1$ ,hence option C is the correct answer to this problem.
Note: We have approached this problem with the help of Graham’s Law of effusion of gases. Graham’s law is most accurate for the calculation of diffusion of gases which involves the movement of one gas at a time through a hole. It also provides a basis for the separation of isotopes by diffusion.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Collision - Important Concepts and Tips for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

What is the significance of the Heisenberg uncertainty class 11 chemistry JEE_Main

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium

The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main

Functional Equations - Detailed Explanation with Methods for JEE
