
The radius of the Earth is 6370 km and the radius of mars is 3440 km. What is the acceleration due to Gravity on Mars if the mass of Mars is $1.1$ times the mass of Earth?
Answer
144.9k+ views
Hint: In this solution, we will use the formula of gravitational acceleration on a planet. We will find the gravitational acceleration on the surface of Earth and Mass and take their ratio to determine the acceleration due to gravity on the surface of Mars.
Formula used: In this solution, we will use the following formulae:
Gravitational acceleration on any planet: $g = \dfrac{{GM}}{{{R^2}}}$ where $G$ is the gravitational constant, $M$ is the mass of the planet, and $R$is the radius of the planet.
Complete step by step answer:
We’ve been given that the radius of the Earth is 6370 km and the radius of mars is 3440 km and the mass of Mars is $1.1$ times the mass of Earth.
Let us denote the mass and radius of Earth as ${M_e}\,{\text{and}}\,{{\text{R}}_e}$ and the mass and radius of Mars as ${M_m}\,{\text{and}}\,{{\text{R}}_m}$.
Then the gravitational acceleration on the surface of Earth will be
${g_e} = \dfrac{{G{M_e}}}{{{{\left( {6370} \right)}^2}}}$
And the gravitational acceleration on the surface of Mars will be
${g_m} = \dfrac{{G{M_m}}}{{{{\left( {3440} \right)}^2}}}$
Taking the ratio of the two gravitational acceleration, we get
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{{{M_e}}}{{{M_m}}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Now we’ve been given that the mass of Mars is $1.1$ times the mass of Earth so we can write that mathematically as ${M_m} = 1.1{M_e}$. So, the above equation will be transformed as
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{1}{{1.1}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Which gives us
$\dfrac{{{g_e}}}{{{g_m}}} = 0.265$
Now we know that the gravitational acceleration on the surface of Earth is ${g_e} = 9.81\,m/{s^2}$ so we can find the gravitational acceleration on the surface of Mars as
${g_m} = \dfrac{{9.81}}{{0.265}} = 37\,m/{s^2}$
Note: The dimensions of Mars are different in reality than what is actually mentioned in the question. But this question tests the concepts of gravitational acceleration and its dependence on the mass and radius of a planet.
Formula used: In this solution, we will use the following formulae:
Gravitational acceleration on any planet: $g = \dfrac{{GM}}{{{R^2}}}$ where $G$ is the gravitational constant, $M$ is the mass of the planet, and $R$is the radius of the planet.
Complete step by step answer:
We’ve been given that the radius of the Earth is 6370 km and the radius of mars is 3440 km and the mass of Mars is $1.1$ times the mass of Earth.
Let us denote the mass and radius of Earth as ${M_e}\,{\text{and}}\,{{\text{R}}_e}$ and the mass and radius of Mars as ${M_m}\,{\text{and}}\,{{\text{R}}_m}$.
Then the gravitational acceleration on the surface of Earth will be
${g_e} = \dfrac{{G{M_e}}}{{{{\left( {6370} \right)}^2}}}$
And the gravitational acceleration on the surface of Mars will be
${g_m} = \dfrac{{G{M_m}}}{{{{\left( {3440} \right)}^2}}}$
Taking the ratio of the two gravitational acceleration, we get
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{{{M_e}}}{{{M_m}}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Now we’ve been given that the mass of Mars is $1.1$ times the mass of Earth so we can write that mathematically as ${M_m} = 1.1{M_e}$. So, the above equation will be transformed as
$\dfrac{{{g_e}}}{{{g_m}}} = \dfrac{1}{{1.1}} \times {\left( {\dfrac{{3440}}{{6370}}} \right)^2}$
Which gives us
$\dfrac{{{g_e}}}{{{g_m}}} = 0.265$
Now we know that the gravitational acceleration on the surface of Earth is ${g_e} = 9.81\,m/{s^2}$ so we can find the gravitational acceleration on the surface of Mars as
${g_m} = \dfrac{{9.81}}{{0.265}} = 37\,m/{s^2}$
Note: The dimensions of Mars are different in reality than what is actually mentioned in the question. But this question tests the concepts of gravitational acceleration and its dependence on the mass and radius of a planet.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
