
The probability density function \[p\left( x \right)\] cannot exceed:
A. Mean
B. Zero
C. One
D. Infinity
Answer
217.2k+ views
Hint: Here, we will first use if \[p\left( x \right)\] is a probability density function for a continuous random variable \[X\] then \[\int\limits_{ - \infty }^\infty {p\left( t \right)dt} = 1\]. And then use the given conditions of the question, to find the required value.
Complete step-by-step solution:
Given that the function is a probability density function \[p\left( x \right)\].
We know that a probability density function is a function of a continuous random variable, whose integral across an interval gives the probability that the value of the variable lies within the same interval.
So we have now seen that if \[p\left( x \right)\] is the probability density function for a continuous random variable \[X\] in any subset of the real numbers, then
\[
P\left( b \right) = P\left( {X \leqslant x} \right) \\
= \int\limits_{ - \infty }^x {p\left( t \right)dt} \\
\]
Since we also know that the probability density function must satisfy two conditions that it must be non-negative, so that the above integral is always non negative and it must integrate to one, that is, \[p\left( x \right) \geqslant 0\] for any value of \[x\] and \[\int\limits_{ - \infty }^\infty {p\left( t \right)dt} = 1\], where the integral is implicitly taken over the whole real line
Thus, we can say from the above two conditions of the probability density function \[p\left( x \right)\] that this function can never be greater than 1.
Therefore, the probability density function \[p\left( x \right)\] cannot exceed one.
Hence, the option C is correct.
Note: In solving these types of questions, you should be familiar with the concept of probability function for a continuous random variable and its integration. Students should also remember the integration rules carefully for more accuracy. Then use the given conditions and values given in the question, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
Complete step-by-step solution:
Given that the function is a probability density function \[p\left( x \right)\].
We know that a probability density function is a function of a continuous random variable, whose integral across an interval gives the probability that the value of the variable lies within the same interval.
So we have now seen that if \[p\left( x \right)\] is the probability density function for a continuous random variable \[X\] in any subset of the real numbers, then
\[
P\left( b \right) = P\left( {X \leqslant x} \right) \\
= \int\limits_{ - \infty }^x {p\left( t \right)dt} \\
\]
Since we also know that the probability density function must satisfy two conditions that it must be non-negative, so that the above integral is always non negative and it must integrate to one, that is, \[p\left( x \right) \geqslant 0\] for any value of \[x\] and \[\int\limits_{ - \infty }^\infty {p\left( t \right)dt} = 1\], where the integral is implicitly taken over the whole real line
Thus, we can say from the above two conditions of the probability density function \[p\left( x \right)\] that this function can never be greater than 1.
Therefore, the probability density function \[p\left( x \right)\] cannot exceed one.
Hence, the option C is correct.
Note: In solving these types of questions, you should be familiar with the concept of probability function for a continuous random variable and its integration. Students should also remember the integration rules carefully for more accuracy. Then use the given conditions and values given in the question, to find the required values. Also, we are supposed to write the values properly to avoid any miscalculation.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Spring Force Explained: Formula, Unit & Everyday Examples

Spring Force & Hooke's Law Explained with Easy Examples

Static and Kinetic Friction Explained: Definitions & Examples

Static Friction Explained: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 9 Maths Chapter 9 Circles

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume 2025-26

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas And Volumes

Fuel Cost Calculator – Estimate Your Journey Expenses Easily

NCERT Solutions For Class 9 Maths Chapter 12 Statistics

NCERT Solutions For Class 9 Maths Chapter 10 Heron's Formula


