
The photon energy in units of eV for electromagnetic waves of wavelength 2 cm is:
A) $2.5 \times {10^{ - 19}}$
B) $5.2 \times {10^{ - 16}}$
C) $3.2 \times {10^{ - 16}}$
D) $6.2 \times {10^{ - 5}}$
Answer
144.6k+ views
Hint: The electromagnetic waves travel in the light beam. The particles in the electromagnetic waves are called the photon. The photon consists of energy that is the multiple of the wavelength electromagnetic wave. These photons fall on the surface of the objects and excite the electrons in the electrons. The energy of a photon depends on the wavelength of the light.
Complete step by step answer:
Given: The wavelength of the electromagnetic waves is $\lambda = 2\;{\text{cm}} = 2\;{\text{cm}} \times \dfrac{{1\;{\text{m}}}}{{100\;{\text{cm}}}} = 0.02\;{\text{m}}$.
The expression to find the energy of the photon is given as,
$E = \dfrac{{hc}}{\lambda }......\left( 1 \right)$
Here, h is the Planck’s constant and its value is $6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$, c is the speed of the light in vacuum and its value is $3 \times {10^8}\;{\text{m}}/{\text{s}}$.
Substitute $\lambda = 0.02\;{\text{m}}$, $h = 6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$ and $c = 3 \times {10^8}\;{\text{m}}/{\text{s}}$ in the expression (1) to find the energy of the photon.
$E = \dfrac{{\left( {6.62 \times {{10}^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}} \right)\left( {3 \times {{10}^8}\;{\text{m}}/{\text{s}}} \right)}}{{0.02\;{\text{m}}}}$
$E = 993 \times {10^{ - 26}}\;{\text{J}}$
$E = \left( {993 \times {{10}^{ - 26}}\;{\text{J}}} \right)\left( {\dfrac{{1\;{\text{eV}}}}{{1.6 \times {{10}^{ - 19}}\;{\text{J}}}}} \right)$
$E = 6.20 \times {10^{ - 5}}\;{\text{eV}}$
Thus, the photon energy of the electromagnetic waves in units of eV is $6.20 \times {10^{ - 5}}\;{\text{eV}}$and the option (D) is the correct answer.
Additional Information: The energy of the photon depends on the frequency of the incident photon. The energy of the photon produces the photoelectric effect, when incident on the surface of an object. The energy of the photon transfers to the electrons of the object.
Note: Be careful in substituting the values of the wavelength because most of the time frequency of the electromagnetic wave is given and the original formula of the photon energy is also in terms of the frequency of the incident photon.
Complete step by step answer:
Given: The wavelength of the electromagnetic waves is $\lambda = 2\;{\text{cm}} = 2\;{\text{cm}} \times \dfrac{{1\;{\text{m}}}}{{100\;{\text{cm}}}} = 0.02\;{\text{m}}$.
The expression to find the energy of the photon is given as,
$E = \dfrac{{hc}}{\lambda }......\left( 1 \right)$
Here, h is the Planck’s constant and its value is $6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$, c is the speed of the light in vacuum and its value is $3 \times {10^8}\;{\text{m}}/{\text{s}}$.
Substitute $\lambda = 0.02\;{\text{m}}$, $h = 6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$ and $c = 3 \times {10^8}\;{\text{m}}/{\text{s}}$ in the expression (1) to find the energy of the photon.
$E = \dfrac{{\left( {6.62 \times {{10}^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}} \right)\left( {3 \times {{10}^8}\;{\text{m}}/{\text{s}}} \right)}}{{0.02\;{\text{m}}}}$
$E = 993 \times {10^{ - 26}}\;{\text{J}}$
$E = \left( {993 \times {{10}^{ - 26}}\;{\text{J}}} \right)\left( {\dfrac{{1\;{\text{eV}}}}{{1.6 \times {{10}^{ - 19}}\;{\text{J}}}}} \right)$
$E = 6.20 \times {10^{ - 5}}\;{\text{eV}}$
Thus, the photon energy of the electromagnetic waves in units of eV is $6.20 \times {10^{ - 5}}\;{\text{eV}}$and the option (D) is the correct answer.
Additional Information: The energy of the photon depends on the frequency of the incident photon. The energy of the photon produces the photoelectric effect, when incident on the surface of an object. The energy of the photon transfers to the electrons of the object.
Note: Be careful in substituting the values of the wavelength because most of the time frequency of the electromagnetic wave is given and the original formula of the photon energy is also in terms of the frequency of the incident photon.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
