
The photon energy in units of eV for electromagnetic waves of wavelength 2 cm is:
A) $2.5 \times {10^{ - 19}}$
B) $5.2 \times {10^{ - 16}}$
C) $3.2 \times {10^{ - 16}}$
D) $6.2 \times {10^{ - 5}}$
Answer
221.1k+ views
Hint: The electromagnetic waves travel in the light beam. The particles in the electromagnetic waves are called the photon. The photon consists of energy that is the multiple of the wavelength electromagnetic wave. These photons fall on the surface of the objects and excite the electrons in the electrons. The energy of a photon depends on the wavelength of the light.
Complete step by step answer:
Given: The wavelength of the electromagnetic waves is $\lambda = 2\;{\text{cm}} = 2\;{\text{cm}} \times \dfrac{{1\;{\text{m}}}}{{100\;{\text{cm}}}} = 0.02\;{\text{m}}$.
The expression to find the energy of the photon is given as,
$E = \dfrac{{hc}}{\lambda }......\left( 1 \right)$
Here, h is the Planck’s constant and its value is $6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$, c is the speed of the light in vacuum and its value is $3 \times {10^8}\;{\text{m}}/{\text{s}}$.
Substitute $\lambda = 0.02\;{\text{m}}$, $h = 6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$ and $c = 3 \times {10^8}\;{\text{m}}/{\text{s}}$ in the expression (1) to find the energy of the photon.
$E = \dfrac{{\left( {6.62 \times {{10}^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}} \right)\left( {3 \times {{10}^8}\;{\text{m}}/{\text{s}}} \right)}}{{0.02\;{\text{m}}}}$
$E = 993 \times {10^{ - 26}}\;{\text{J}}$
$E = \left( {993 \times {{10}^{ - 26}}\;{\text{J}}} \right)\left( {\dfrac{{1\;{\text{eV}}}}{{1.6 \times {{10}^{ - 19}}\;{\text{J}}}}} \right)$
$E = 6.20 \times {10^{ - 5}}\;{\text{eV}}$
Thus, the photon energy of the electromagnetic waves in units of eV is $6.20 \times {10^{ - 5}}\;{\text{eV}}$and the option (D) is the correct answer.
Additional Information: The energy of the photon depends on the frequency of the incident photon. The energy of the photon produces the photoelectric effect, when incident on the surface of an object. The energy of the photon transfers to the electrons of the object.
Note: Be careful in substituting the values of the wavelength because most of the time frequency of the electromagnetic wave is given and the original formula of the photon energy is also in terms of the frequency of the incident photon.
Complete step by step answer:
Given: The wavelength of the electromagnetic waves is $\lambda = 2\;{\text{cm}} = 2\;{\text{cm}} \times \dfrac{{1\;{\text{m}}}}{{100\;{\text{cm}}}} = 0.02\;{\text{m}}$.
The expression to find the energy of the photon is given as,
$E = \dfrac{{hc}}{\lambda }......\left( 1 \right)$
Here, h is the Planck’s constant and its value is $6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$, c is the speed of the light in vacuum and its value is $3 \times {10^8}\;{\text{m}}/{\text{s}}$.
Substitute $\lambda = 0.02\;{\text{m}}$, $h = 6.62 \times {10^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}$ and $c = 3 \times {10^8}\;{\text{m}}/{\text{s}}$ in the expression (1) to find the energy of the photon.
$E = \dfrac{{\left( {6.62 \times {{10}^{ - 34}}\;{\text{kg}} \cdot {{\text{m}}^2}/{\text{s}}} \right)\left( {3 \times {{10}^8}\;{\text{m}}/{\text{s}}} \right)}}{{0.02\;{\text{m}}}}$
$E = 993 \times {10^{ - 26}}\;{\text{J}}$
$E = \left( {993 \times {{10}^{ - 26}}\;{\text{J}}} \right)\left( {\dfrac{{1\;{\text{eV}}}}{{1.6 \times {{10}^{ - 19}}\;{\text{J}}}}} \right)$
$E = 6.20 \times {10^{ - 5}}\;{\text{eV}}$
Thus, the photon energy of the electromagnetic waves in units of eV is $6.20 \times {10^{ - 5}}\;{\text{eV}}$and the option (D) is the correct answer.
Additional Information: The energy of the photon depends on the frequency of the incident photon. The energy of the photon produces the photoelectric effect, when incident on the surface of an object. The energy of the photon transfers to the electrons of the object.
Note: Be careful in substituting the values of the wavelength because most of the time frequency of the electromagnetic wave is given and the original formula of the photon energy is also in terms of the frequency of the incident photon.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

