
The phenomenon of photoelectric emission depends on
A) wavelength of incident light
B) work function of surface
C) nature of surface
D) all of the above
Answer
124.2k+ views
Hint: The photoelectric emission happens when incident light with a certain wavelength excites the free electron on the metal surface. The absorbed energy from the incident photon supplies the excitation energy and the kinetic energy of the emitted electron. This excitation energy is called the work function of the surface.
Formula Used:
The process of the photoelectric emission can be described as
${E_{photon}} = \Phi + {K_{electron}}$
where, ${E_{photon}}$ is the energy of the photon, $\Phi $ is the work function of the metal surface and ${K_{electron}}$ is the kinetic energy of the emitted electron
Complete step by step answer:
Step 1:
From eq (1) it is evident that the energy of the photon is the key ingredient for the process of photo emission. The energy of the photon is transferred to the electron to emit from the surface by surpassing the work function and then attaining a kinetic energy of emission.
The energy of photon can be written as
${E_{photon}} = \dfrac{{hc}}{\lambda }$
where, $h$ is the Planck's constant, $c$ is the velocity of light in vacuum and $\lambda $ is the wavelength of the photon.
Thus, the wavelength of the incident light is related to the energy of the photon ${E_{photon}}$ that is an important factor of the photoelectric emission.
So, option A is a correct option.
Step 2:
Again, the work function $\Phi $ also plays an important role in the photoelectric emission. If the absorbed energy from the incident photon, is equal or greater than the work function of the surface then the electron absorbs the energy and gets emitted.
Hence option B is also correct.
Step 3:
The work function of any surface is dependent on the nature of the surface material only.
Hence, option C is also correct.
So, you can get that all the options A, B and C are correct
Final Answer:
The correct option is (D) All of the above.
Note: The photoelectric emission is a process where the photon is incident on a surface, then excites the electron on the surface and the electron is emitted. So not only the emission of electrons is related but the other two processes are equally important. So, you need to incorporate the wavelength of the incident photon and the work function of the surface in account. Again, you should identify the cause of the work function as the nature of the surface only.
Formula Used:
The process of the photoelectric emission can be described as
${E_{photon}} = \Phi + {K_{electron}}$
where, ${E_{photon}}$ is the energy of the photon, $\Phi $ is the work function of the metal surface and ${K_{electron}}$ is the kinetic energy of the emitted electron
Complete step by step answer:
Step 1:
From eq (1) it is evident that the energy of the photon is the key ingredient for the process of photo emission. The energy of the photon is transferred to the electron to emit from the surface by surpassing the work function and then attaining a kinetic energy of emission.
The energy of photon can be written as
${E_{photon}} = \dfrac{{hc}}{\lambda }$
where, $h$ is the Planck's constant, $c$ is the velocity of light in vacuum and $\lambda $ is the wavelength of the photon.
Thus, the wavelength of the incident light is related to the energy of the photon ${E_{photon}}$ that is an important factor of the photoelectric emission.
So, option A is a correct option.
Step 2:
Again, the work function $\Phi $ also plays an important role in the photoelectric emission. If the absorbed energy from the incident photon, is equal or greater than the work function of the surface then the electron absorbs the energy and gets emitted.
Hence option B is also correct.
Step 3:
The work function of any surface is dependent on the nature of the surface material only.
Hence, option C is also correct.
So, you can get that all the options A, B and C are correct
Final Answer:
The correct option is (D) All of the above.
Note: The photoelectric emission is a process where the photon is incident on a surface, then excites the electron on the surface and the electron is emitted. So not only the emission of electrons is related but the other two processes are equally important. So, you need to incorporate the wavelength of the incident photon and the work function of the surface in account. Again, you should identify the cause of the work function as the nature of the surface only.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
