
The phase difference between the particles vibrating between two consecutive nodes is:
(A) Zero
(B) $\pi /2$
(C) $\pi $
(D) $2\pi $
Answer
216k+ views
Hint: To answer this question we have to know the concept of node and antinodes. Once we are clear about the concept we can comment on the phase difference between two consecutive nodes, and justify. This will give an answer to the required question.
Complete step by step answer:
We should know that the region between the nodes all go to the mean position together and their respective maximum together. So the summation of the phase differences becomes zero.
Hence we can say that the phase difference between the particles vibrating between two consecutive nodes is zero.
So the correct answer is option A.
Note: We should know that a node is defined as the point along which a standing wave where the wave will have a minimum amplitude. On the other hand, an antinode is defined as the point along which a medium that is undergoing the maximum displacement above and below the mean position. The displacement of the standing wave is known to face the displacement which is maximum at the antinode point. The antinodes are known to be placed in the half way between each of the pairs of the adjacent nodes in a wave.
It should also be known that phase difference signifies the difference in the unit of degrees or radians when two or even more than two consecutive quantities move to their maximum values or zero values.
For our information we should also know that the phase difference between two consecutive antinodes is similar to 180 degrees. The phase difference between a node and the nearest antinode is 90 degrees. This concept is explained keeping in mind the structure of a simple sine function.
Complete step by step answer:
We should know that the region between the nodes all go to the mean position together and their respective maximum together. So the summation of the phase differences becomes zero.
Hence we can say that the phase difference between the particles vibrating between two consecutive nodes is zero.
So the correct answer is option A.
Note: We should know that a node is defined as the point along which a standing wave where the wave will have a minimum amplitude. On the other hand, an antinode is defined as the point along which a medium that is undergoing the maximum displacement above and below the mean position. The displacement of the standing wave is known to face the displacement which is maximum at the antinode point. The antinodes are known to be placed in the half way between each of the pairs of the adjacent nodes in a wave.
It should also be known that phase difference signifies the difference in the unit of degrees or radians when two or even more than two consecutive quantities move to their maximum values or zero values.
For our information we should also know that the phase difference between two consecutive antinodes is similar to 180 degrees. The phase difference between a node and the nearest antinode is 90 degrees. This concept is explained keeping in mind the structure of a simple sine function.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

