
The phase difference between the particles vibrating between two consecutive nodes is:
(A) Zero
(B) $\pi /2$
(C) $\pi $
(D) $2\pi $
Answer
123k+ views
Hint: To answer this question we have to know the concept of node and antinodes. Once we are clear about the concept we can comment on the phase difference between two consecutive nodes, and justify. This will give an answer to the required question.
Complete step by step answer:
We should know that the region between the nodes all go to the mean position together and their respective maximum together. So the summation of the phase differences becomes zero.
Hence we can say that the phase difference between the particles vibrating between two consecutive nodes is zero.
So the correct answer is option A.
Note: We should know that a node is defined as the point along which a standing wave where the wave will have a minimum amplitude. On the other hand, an antinode is defined as the point along which a medium that is undergoing the maximum displacement above and below the mean position. The displacement of the standing wave is known to face the displacement which is maximum at the antinode point. The antinodes are known to be placed in the half way between each of the pairs of the adjacent nodes in a wave.
It should also be known that phase difference signifies the difference in the unit of degrees or radians when two or even more than two consecutive quantities move to their maximum values or zero values.
For our information we should also know that the phase difference between two consecutive antinodes is similar to 180 degrees. The phase difference between a node and the nearest antinode is 90 degrees. This concept is explained keeping in mind the structure of a simple sine function.
Complete step by step answer:
We should know that the region between the nodes all go to the mean position together and their respective maximum together. So the summation of the phase differences becomes zero.
Hence we can say that the phase difference between the particles vibrating between two consecutive nodes is zero.
So the correct answer is option A.
Note: We should know that a node is defined as the point along which a standing wave where the wave will have a minimum amplitude. On the other hand, an antinode is defined as the point along which a medium that is undergoing the maximum displacement above and below the mean position. The displacement of the standing wave is known to face the displacement which is maximum at the antinode point. The antinodes are known to be placed in the half way between each of the pairs of the adjacent nodes in a wave.
It should also be known that phase difference signifies the difference in the unit of degrees or radians when two or even more than two consecutive quantities move to their maximum values or zero values.
For our information we should also know that the phase difference between two consecutive antinodes is similar to 180 degrees. The phase difference between a node and the nearest antinode is 90 degrees. This concept is explained keeping in mind the structure of a simple sine function.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

The ratio of the diameters of two metallic rods of class 11 physics JEE_Main

What is the difference between Conduction and conv class 11 physics JEE_Main

Mark the correct statements about the friction between class 11 physics JEE_Main

Find the acceleration of the wedge towards the right class 11 physics JEE_Main

A standing wave is formed by the superposition of two class 11 physics JEE_Main

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

Charging and Discharging of Capacitor

Physics Average Value and RMS Value JEE Main 2025

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions

JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Course 2025: Get All the Relevant Details

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Mechanical Properties of Fluids Class 11 Notes: CBSE Physics Chapter 9

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Revision Notes for Physics on Modern Physics

JEE Main 2022 July 28 Shift 2 Question Paper with Answer Keys & Solutions
