
The phase difference between the particles vibrating between two consecutive nodes is:
(A) Zero
(B) $\pi /2$
(C) $\pi $
(D) $2\pi $
Answer
229.2k+ views
Hint: To answer this question we have to know the concept of node and antinodes. Once we are clear about the concept we can comment on the phase difference between two consecutive nodes, and justify. This will give an answer to the required question.
Complete step by step answer:
We should know that the region between the nodes all go to the mean position together and their respective maximum together. So the summation of the phase differences becomes zero.
Hence we can say that the phase difference between the particles vibrating between two consecutive nodes is zero.
So the correct answer is option A.
Note: We should know that a node is defined as the point along which a standing wave where the wave will have a minimum amplitude. On the other hand, an antinode is defined as the point along which a medium that is undergoing the maximum displacement above and below the mean position. The displacement of the standing wave is known to face the displacement which is maximum at the antinode point. The antinodes are known to be placed in the half way between each of the pairs of the adjacent nodes in a wave.
It should also be known that phase difference signifies the difference in the unit of degrees or radians when two or even more than two consecutive quantities move to their maximum values or zero values.
For our information we should also know that the phase difference between two consecutive antinodes is similar to 180 degrees. The phase difference between a node and the nearest antinode is 90 degrees. This concept is explained keeping in mind the structure of a simple sine function.
Complete step by step answer:
We should know that the region between the nodes all go to the mean position together and their respective maximum together. So the summation of the phase differences becomes zero.
Hence we can say that the phase difference between the particles vibrating between two consecutive nodes is zero.
So the correct answer is option A.
Note: We should know that a node is defined as the point along which a standing wave where the wave will have a minimum amplitude. On the other hand, an antinode is defined as the point along which a medium that is undergoing the maximum displacement above and below the mean position. The displacement of the standing wave is known to face the displacement which is maximum at the antinode point. The antinodes are known to be placed in the half way between each of the pairs of the adjacent nodes in a wave.
It should also be known that phase difference signifies the difference in the unit of degrees or radians when two or even more than two consecutive quantities move to their maximum values or zero values.
For our information we should also know that the phase difference between two consecutive antinodes is similar to 180 degrees. The phase difference between a node and the nearest antinode is 90 degrees. This concept is explained keeping in mind the structure of a simple sine function.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

