
The particular solution of the differential equation \[(1 + logx)\dfrac{{dx}}{{dy}}{\text{ }} - xlogx = 0\]
When \[x = e,y = {e^2}\] is :
\[
{\mathbf{A}}.{\text{ }}y = log(xlogx) + ({e^2} - 1) \\
{\mathbf{B}}.\;\,ey = xlogx + {e^3} - e \\
{\mathbf{C}}.\;\,xy = elogx - e + {e^3} \\
{\mathbf{D}}.\;\,ylogx = ex \\
\]
Answer
162k+ views
Hint : Separate $dy$ and $dx$ then integrate the equation
Given : In the equation it is given that,
\[(1 + logx)\dfrac{{dx}}{{dy}}\, - xlogx = 0\]
Then we got the value of \[\dfrac{{dy}}{{dx}}\] as ,
\[\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{1 + \log x}}{{x\log x}}\]
Then ,
\[dy{\text{ = }}\dfrac{{1 + \log x}}{{x\log x}}dx\]
Integrating both sides we get,
\[\int {dy = \int {\dfrac{{1 + \log x}}{{x\log x}}dx} } \]
Let \[logx = t\]
\[
\dfrac{{dx}}{{dt}} = x \\
\\
\dfrac{{dx}}{x} = t \\
\]
The putting the value and integrating we get ,
\[
\int {\dfrac{{1 + t}}{t}dt = \int {dy} } \\
y = log(t) + t + k\;...............\left[ {{\text{where k is a constant}}} \right] \\
y = log(logx) + logx + k \\
\]
Put \[x = e\] and \[y = {e^2}\]
We get,
\[
{e^2} = log(log(e)) + log(e) + k \\
k = {e^2} - 1 \\
\]
Therefore ,
\[y = log(xlogx) + ({e^2} - 1)\;.......\;[\because loga + logb = log(ab)]\]
Note :- Whenever you are struck with these types of questions, first get the value of $\dfrac{{dy}}{{dx}}$ if you can .
Then apply the integral both sides to get the general equation. Then use the value of \[x\& y\]if provided in the question to get the value of constant of integral. Then you can get the particular solution by putting the value of constant.
Given : In the equation it is given that,
\[(1 + logx)\dfrac{{dx}}{{dy}}\, - xlogx = 0\]
Then we got the value of \[\dfrac{{dy}}{{dx}}\] as ,
\[\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{1 + \log x}}{{x\log x}}\]
Then ,
\[dy{\text{ = }}\dfrac{{1 + \log x}}{{x\log x}}dx\]
Integrating both sides we get,
\[\int {dy = \int {\dfrac{{1 + \log x}}{{x\log x}}dx} } \]
Let \[logx = t\]
\[
\dfrac{{dx}}{{dt}} = x \\
\\
\dfrac{{dx}}{x} = t \\
\]
The putting the value and integrating we get ,
\[
\int {\dfrac{{1 + t}}{t}dt = \int {dy} } \\
y = log(t) + t + k\;...............\left[ {{\text{where k is a constant}}} \right] \\
y = log(logx) + logx + k \\
\]
Put \[x = e\] and \[y = {e^2}\]
We get,
\[
{e^2} = log(log(e)) + log(e) + k \\
k = {e^2} - 1 \\
\]
Therefore ,
\[y = log(xlogx) + ({e^2} - 1)\;.......\;[\because loga + logb = log(ab)]\]
Note :- Whenever you are struck with these types of questions, first get the value of $\dfrac{{dy}}{{dx}}$ if you can .
Then apply the integral both sides to get the general equation. Then use the value of \[x\& y\]if provided in the question to get the value of constant of integral. Then you can get the particular solution by putting the value of constant.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
