
The oxidation state of iron in \[{{\rm{K}}_4}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right]\] is:
A ) 1
B ) 4
C ) 3
D ) 2
Answer
152.4k+ views
Hint: Oxidation State is the total number of electrons either gained or lost by an atom to form a chemical bond with another atom.The sum of the oxidation states of all the atoms for a neutral compound.
Complete step by step answer:
Oxidation state is also known as the oxidation number. It is the total number of electrons either gained or lost by an atom to form a chemical bond with another atom.
Iron usually forms compounds in which it has either +2 oxidation state or +3 oxidation state. Thus, in compounds such as ferrous chloride and ferrous sulphate, the oxidation state of iron is +2 as it loses 2 electrons during compound formation. On the other hand, in compounds such as ferric chloride and ferric sulphate, the oxidation state of iron is +3 as it loses 3 electrons during compound formation.
Let X be the oxidation state of iron in \[{{\rm{K}}_4}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right]\]. The oxidation states of potassium and cyanide ions are +1 and -1 respectively. In a neutral molecule, the sum of the oxidation states of all the atoms / ions is zero.
Calculate the oxidation state of iron in \[{{\rm{K}}_4}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right]\].
\[\begin{array}{c}
4\left( { + 1} \right) + X + 6\left( { - 1} \right) = 0\\
4 + X - 6 = 0\\
X - 2 = 0\\
X = + 2
\end{array}\]
Hence, the oxidation state of iron in \[{{\rm{K}}_4}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right]\]. is +2.
The correct answer is option D )
Note:
Do not forget to include the oxidation state of potassium cation in the calculation for the oxidation state of iron.
Complete step by step answer:
Oxidation state is also known as the oxidation number. It is the total number of electrons either gained or lost by an atom to form a chemical bond with another atom.
Iron usually forms compounds in which it has either +2 oxidation state or +3 oxidation state. Thus, in compounds such as ferrous chloride and ferrous sulphate, the oxidation state of iron is +2 as it loses 2 electrons during compound formation. On the other hand, in compounds such as ferric chloride and ferric sulphate, the oxidation state of iron is +3 as it loses 3 electrons during compound formation.
Let X be the oxidation state of iron in \[{{\rm{K}}_4}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right]\]. The oxidation states of potassium and cyanide ions are +1 and -1 respectively. In a neutral molecule, the sum of the oxidation states of all the atoms / ions is zero.
Calculate the oxidation state of iron in \[{{\rm{K}}_4}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right]\].
\[\begin{array}{c}
4\left( { + 1} \right) + X + 6\left( { - 1} \right) = 0\\
4 + X - 6 = 0\\
X - 2 = 0\\
X = + 2
\end{array}\]
Hence, the oxidation state of iron in \[{{\rm{K}}_4}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right]\]. is +2.
The correct answer is option D )
Note:
Do not forget to include the oxidation state of potassium cation in the calculation for the oxidation state of iron.
Recently Updated Pages
Classification of Drugs Based on Pharmacological Effect, Drug Action

Types of Solutions - Solution in Chemistry

Difference Between Alcohol and Phenol

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Solutions Class 12 Notes: CBSE Chemistry Chapter 1
