
The orbital radius of the moon around the earth is $3.8 \times {10^8}$ meter and its time period is 27.3 days. The centripetal acceleration of the moon will be
(A) $- 2.4 \times {10^{ - 3}}m/{s^2}$
(B) $11.2m/{s^2}$
(C) $2.7 \times {10^{ - 3}}m/{s^2}$
(D) $9.8m/{s^2}$
Answer
137.7k+ views
Hint The centripetal acceleration, as known by us is defined as the property of the motion of a body which is traversing in a circular path. The acceleration is signified by the radially directed towards the centre of the circle and the magnitude will be similar to the square of the body’s speed along the curve which is divided by the distance from the centre of the circle to the body which is moving.
Complete step by step answer:
We know that centripetal acceleration is defined as net centripetal force / mass.
The net centripetal force is given as: $\dfrac{{GMm}}{{{R^2}}} - m{(\omega )^2}R$
The value of $\omega$is given as: $\dfrac{2\pi }{27.3\times 24\times 3600}$
Here the value of R = $3.8 \times {10^8}$M and M is $5.92 \times {10^2}4$
The centripetal acceleration is given as:
$\dfrac{{\dfrac{{GMm}}{{{R^2}}} - m{{(\omega )}^2}R}}{m}$
We have to put the values in the above expression to get the expression as:
$\dfrac{{6.67 \times {{10}^{ - 11}} \times 5.92 \times {{10}^2}4}}{{{{(3.8 \times {{10}^8})}^2}}} - {\left( {\dfrac{{2\pi }}{{27.3 \times 24 \times 3600}}} \right)^2} \times 3.8 \times {10^8}$
The value we get after the evaluation is given as: $2.7 \times {10^{ - 3}}m/{s^2}$.
Hence the correct answer is option C.
Note: We should know that any summation of the force which is the cause behind the uniform circular motion is known as the centripetal force. As we know that Newton's second law of motion gives us an idea that the net force is defined as the mass times acceleration. But we should remember that for any uniform circular motion the acceleration of a body is the centripetal acceleration.
Complete step by step answer:
We know that centripetal acceleration is defined as net centripetal force / mass.
The net centripetal force is given as: $\dfrac{{GMm}}{{{R^2}}} - m{(\omega )^2}R$
The value of $\omega$is given as: $\dfrac{2\pi }{27.3\times 24\times 3600}$
Here the value of R = $3.8 \times {10^8}$M and M is $5.92 \times {10^2}4$
The centripetal acceleration is given as:
$\dfrac{{\dfrac{{GMm}}{{{R^2}}} - m{{(\omega )}^2}R}}{m}$
We have to put the values in the above expression to get the expression as:
$\dfrac{{6.67 \times {{10}^{ - 11}} \times 5.92 \times {{10}^2}4}}{{{{(3.8 \times {{10}^8})}^2}}} - {\left( {\dfrac{{2\pi }}{{27.3 \times 24 \times 3600}}} \right)^2} \times 3.8 \times {10^8}$
The value we get after the evaluation is given as: $2.7 \times {10^{ - 3}}m/{s^2}$.
Hence the correct answer is option C.
Note: We should know that any summation of the force which is the cause behind the uniform circular motion is known as the centripetal force. As we know that Newton's second law of motion gives us an idea that the net force is defined as the mass times acceleration. But we should remember that for any uniform circular motion the acceleration of a body is the centripetal acceleration.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
