Answer
Verified
79.5k+ views
Hint: The nodes in an orbital are the points where the probability of finding an electron is zero. The total number of nodes is given by $(n - 1)$, the number of radial nodes by $(n - l - 1)$ and the number of angular nodes by $l$ . Here n is the principal quantum number and it denotes the shells while l is the azimuthal quantum number which describes the orbital angular momentum for an atomic orbital and describes the shape of the orbital.
Complete step by step answer:
1: As we know the total number of nodes is given by $(n - 1)$, where $n$ is the principal quantum number.
2: $l$ is the Azimuthal quantum number, which describes the shape of orbitals. The value of $l$ can be from 0 to $(n - 1)$ . The values describe a shape, so 0 is for s-orbital, 1 for p-orbital and 2 for d-orbital and so on.
3: Here, we have to calculate the number of radial and angular nodes. So,
Number of angular nodes = $l$
Here, for d-orbital, $l$ = 2.
∴ Number of angular nodes = 2
4: For radial nodes, the formula is: total nodes – angular nodes
$ = (n - 1) - l$
Putting the values of $n$ and $l$ in the formula, we get:
⸫Number of radial nodes $
= n - 2 - 1 \\
= n - 3 \\
$
Thus, the number of radial nodes is $(n - 3)$ .and as mentioned before, the total number of nodes is $(n - 1)$ .
The correct option is (d).
Note:
This answer can also be verified by adding the radial and angular nodes for d-orbital, which is:
Radial nodes + Angular nodes = Total nodes
=$(n - 3) + 2 = (n - 1)$
Complete step by step answer:
1: As we know the total number of nodes is given by $(n - 1)$, where $n$ is the principal quantum number.
2: $l$ is the Azimuthal quantum number, which describes the shape of orbitals. The value of $l$ can be from 0 to $(n - 1)$ . The values describe a shape, so 0 is for s-orbital, 1 for p-orbital and 2 for d-orbital and so on.
3: Here, we have to calculate the number of radial and angular nodes. So,
Number of angular nodes = $l$
Here, for d-orbital, $l$ = 2.
∴ Number of angular nodes = 2
4: For radial nodes, the formula is: total nodes – angular nodes
$ = (n - 1) - l$
Putting the values of $n$ and $l$ in the formula, we get:
⸫Number of radial nodes $
= n - 2 - 1 \\
= n - 3 \\
$
Thus, the number of radial nodes is $(n - 3)$ .and as mentioned before, the total number of nodes is $(n - 1)$ .
The correct option is (d).
Note:
This answer can also be verified by adding the radial and angular nodes for d-orbital, which is:
Radial nodes + Angular nodes = Total nodes
=$(n - 3) + 2 = (n - 1)$
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main