
The number of orbitals with \[{\mathbf{n}} = {\text{ }}{\mathbf{5}}\],\[{{\mathbf{m}}_{\mathbf{1}}}\; = {\text{ }} + {\mathbf{2}}\] is ___________. (Round off to the nearest integer).
Answer
218.7k+ views
Hint: The quantum numbers are principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (ml) and spin quantum number (ms). These quantum numbers are used to describe an electron in an orbital. Principle quantum number (n) signifies shell and azimuthal quantum number (l) signifies sub-shell of the orbital. Magnetic quantum number represents the orientation of orbitals in the subshell. Spin quantum number represents the angular momentum of the electron.
Complete Step by Step Solution:
Given principal quantum number, \[{\mathbf{n}} = {\text{ }}{\mathbf{5}}\]
Therefore, azimuthal quantum number is given by formula \[{\mathbf{l}} = {\mathbf{n}} - {\mathbf{1}} \ldots \ldots {\mathbf{1}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}},{\mathbf{1}}\]. Also, magnetic quantum number is given \[{\mathbf{m}} = - {\mathbf{l}}{\text{ }}{\mathbf{to}} + {\mathbf{l}}\]
Thus, \[{\mathbf{m}} = - {\mathbf{4}}, - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}},{\mathbf{4}}\]for \[{\mathbf{l}} = {\mathbf{4}}\]
\[{\mathbf{m}} = - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}}\]for \[{\mathbf{l}} = {\mathbf{3}}\]
\[{\mathbf{m}} = - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}}\]for \[{\mathbf{l}} = {\mathbf{2}}\]
\[{\mathbf{m}} = - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}}\]for \[{\mathbf{l}} = {\mathbf{1}}\]
Thus, \[{\mathbf{m}} = + {\mathbf{2}}\] appears in\[{\mathbf{l}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}}\]. So, the number of orbitals having value of m as \[ + {\mathbf{2}}\] is\[{\mathbf{3}}\].
Note: The value of l cannot exceed the value of n and also, the value of m cannot exceed the value of l. Principal and azimuthal quantum numbers cannot have a negative value. Spin quantum numbers have a value \[ + \frac{1}{2}\]and $ - \frac{1}{2}$. There are only two values of spin quantum number because a single orbital can accommodate only two electrons in an orbital. It is not necessary that \[ + \frac{1}{2}\]represents clockwise direction and $ - \frac{1}{2}$represents negative. Positive and negative signs just represent that the spin direction is the reverse of one another.
Complete Step by Step Solution:
Given principal quantum number, \[{\mathbf{n}} = {\text{ }}{\mathbf{5}}\]
Therefore, azimuthal quantum number is given by formula \[{\mathbf{l}} = {\mathbf{n}} - {\mathbf{1}} \ldots \ldots {\mathbf{1}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}},{\mathbf{1}}\]. Also, magnetic quantum number is given \[{\mathbf{m}} = - {\mathbf{l}}{\text{ }}{\mathbf{to}} + {\mathbf{l}}\]
Thus, \[{\mathbf{m}} = - {\mathbf{4}}, - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}},{\mathbf{4}}\]for \[{\mathbf{l}} = {\mathbf{4}}\]
\[{\mathbf{m}} = - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}}\]for \[{\mathbf{l}} = {\mathbf{3}}\]
\[{\mathbf{m}} = - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}}\]for \[{\mathbf{l}} = {\mathbf{2}}\]
\[{\mathbf{m}} = - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}}\]for \[{\mathbf{l}} = {\mathbf{1}}\]
Thus, \[{\mathbf{m}} = + {\mathbf{2}}\] appears in\[{\mathbf{l}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}}\]. So, the number of orbitals having value of m as \[ + {\mathbf{2}}\] is\[{\mathbf{3}}\].
Note: The value of l cannot exceed the value of n and also, the value of m cannot exceed the value of l. Principal and azimuthal quantum numbers cannot have a negative value. Spin quantum numbers have a value \[ + \frac{1}{2}\]and $ - \frac{1}{2}$. There are only two values of spin quantum number because a single orbital can accommodate only two electrons in an orbital. It is not necessary that \[ + \frac{1}{2}\]represents clockwise direction and $ - \frac{1}{2}$represents negative. Positive and negative signs just represent that the spin direction is the reverse of one another.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

