
The moment of inertia of a ring of mass 10g and radius 1cm about a tangent to the ring and normal to its plane is:
A. $2 \times {10^{ - 6}}kg{m^2}$
B. $5 \times {10^{ - 7}}kg{m^2}$
C. $5 \times {10^{ - 8}}kg{m^2}$
D. $4 \times {10^{ - 6}}kg{m^2}$
Answer
232.8k+ views
Hint Moment of inertia can be calculated by using perpendicular axis theorem or by parallel axis theorem. The moment of inertia of a ring about a tangent to the ring and normal to the plane is 2MR$^2$ where, M is the mass of the ring and R is the radius of the ring.
Complete step-by-step answer:
Here, it is given that
Mass of the ring is $M = 10g = \dfrac{{10}}{{1000}}kg = {10^{ - 2}}kg$
Radius of the ring is $R = 1cm = \dfrac{1}{{100}}m = {10^{ - 2}}m$
The moment of inertia can be calculated by using the parallel or perpendicular axis theorem.
Now, the moment of inertia of a ring about a tangent to the ring and normal to the plane is
$ \Rightarrow I = 2M{R^2}$…………………….. (1)
Now, substitute the values of m and R in equation (1), we get
$
\Rightarrow I = 2 \times {10^{ - 2}} \times {\left( {{{10}^{ - 2}}} \right)^2} \\
\Rightarrow I = 2 \times {10^{ - 2}} \times {10^{ - 4}} \\
\Rightarrow I = 2 \times {10^{ - 6}}kg{m^2} \\
$
Thus, the moment of inertia of a ring about the tangent to the ring and normal to the plane is $2 \times {10^{ - 6}}kg{m^2}$
Hence, option A is the correct answer
Additional information The moment of inertia is a physical quantity which describes how easily a body can be rotated about a given axis. In general it can be expressed as $I = M{R^2}$, M is the mass of an object and R is the radius of the object.
Note the moment of inertia of planar objects are guided by the perpendicular axis theorem i.e. ( these are the moment of inertia along Z, X, Y axis respectively). The moment of inertia of the rigid body is guided by parallel axis theorem. Care should be taken in calculating the distance of separation from the centre of mass to the tangent placed.
Complete step-by-step answer:
Here, it is given that
Mass of the ring is $M = 10g = \dfrac{{10}}{{1000}}kg = {10^{ - 2}}kg$
Radius of the ring is $R = 1cm = \dfrac{1}{{100}}m = {10^{ - 2}}m$
The moment of inertia can be calculated by using the parallel or perpendicular axis theorem.
Now, the moment of inertia of a ring about a tangent to the ring and normal to the plane is
$ \Rightarrow I = 2M{R^2}$…………………….. (1)
Now, substitute the values of m and R in equation (1), we get
$
\Rightarrow I = 2 \times {10^{ - 2}} \times {\left( {{{10}^{ - 2}}} \right)^2} \\
\Rightarrow I = 2 \times {10^{ - 2}} \times {10^{ - 4}} \\
\Rightarrow I = 2 \times {10^{ - 6}}kg{m^2} \\
$
Thus, the moment of inertia of a ring about the tangent to the ring and normal to the plane is $2 \times {10^{ - 6}}kg{m^2}$
Hence, option A is the correct answer
Additional information The moment of inertia is a physical quantity which describes how easily a body can be rotated about a given axis. In general it can be expressed as $I = M{R^2}$, M is the mass of an object and R is the radius of the object.
Note the moment of inertia of planar objects are guided by the perpendicular axis theorem i.e. ( these are the moment of inertia along Z, X, Y axis respectively). The moment of inertia of the rigid body is guided by parallel axis theorem. Care should be taken in calculating the distance of separation from the centre of mass to the tangent placed.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

