
The moment of inertia of a ring of mass 10g and radius 1cm about a tangent to the ring and normal to its plane is:
A. $2 \times {10^{ - 6}}kg{m^2}$
B. $5 \times {10^{ - 7}}kg{m^2}$
C. $5 \times {10^{ - 8}}kg{m^2}$
D. $4 \times {10^{ - 6}}kg{m^2}$
Answer
136.5k+ views
Hint Moment of inertia can be calculated by using perpendicular axis theorem or by parallel axis theorem. The moment of inertia of a ring about a tangent to the ring and normal to the plane is 2MR$^2$ where, M is the mass of the ring and R is the radius of the ring.
Complete step-by-step answer:
Here, it is given that
Mass of the ring is $M = 10g = \dfrac{{10}}{{1000}}kg = {10^{ - 2}}kg$
Radius of the ring is $R = 1cm = \dfrac{1}{{100}}m = {10^{ - 2}}m$
The moment of inertia can be calculated by using the parallel or perpendicular axis theorem.
Now, the moment of inertia of a ring about a tangent to the ring and normal to the plane is
$ \Rightarrow I = 2M{R^2}$…………………….. (1)
Now, substitute the values of m and R in equation (1), we get
$
\Rightarrow I = 2 \times {10^{ - 2}} \times {\left( {{{10}^{ - 2}}} \right)^2} \\
\Rightarrow I = 2 \times {10^{ - 2}} \times {10^{ - 4}} \\
\Rightarrow I = 2 \times {10^{ - 6}}kg{m^2} \\
$
Thus, the moment of inertia of a ring about the tangent to the ring and normal to the plane is $2 \times {10^{ - 6}}kg{m^2}$
Hence, option A is the correct answer
Additional information The moment of inertia is a physical quantity which describes how easily a body can be rotated about a given axis. In general it can be expressed as $I = M{R^2}$, M is the mass of an object and R is the radius of the object.
Note the moment of inertia of planar objects are guided by the perpendicular axis theorem i.e. ( these are the moment of inertia along Z, X, Y axis respectively). The moment of inertia of the rigid body is guided by parallel axis theorem. Care should be taken in calculating the distance of separation from the centre of mass to the tangent placed.
Complete step-by-step answer:
Here, it is given that
Mass of the ring is $M = 10g = \dfrac{{10}}{{1000}}kg = {10^{ - 2}}kg$
Radius of the ring is $R = 1cm = \dfrac{1}{{100}}m = {10^{ - 2}}m$
The moment of inertia can be calculated by using the parallel or perpendicular axis theorem.
Now, the moment of inertia of a ring about a tangent to the ring and normal to the plane is
$ \Rightarrow I = 2M{R^2}$…………………….. (1)
Now, substitute the values of m and R in equation (1), we get
$
\Rightarrow I = 2 \times {10^{ - 2}} \times {\left( {{{10}^{ - 2}}} \right)^2} \\
\Rightarrow I = 2 \times {10^{ - 2}} \times {10^{ - 4}} \\
\Rightarrow I = 2 \times {10^{ - 6}}kg{m^2} \\
$
Thus, the moment of inertia of a ring about the tangent to the ring and normal to the plane is $2 \times {10^{ - 6}}kg{m^2}$
Hence, option A is the correct answer
Additional information The moment of inertia is a physical quantity which describes how easily a body can be rotated about a given axis. In general it can be expressed as $I = M{R^2}$, M is the mass of an object and R is the radius of the object.
Note the moment of inertia of planar objects are guided by the perpendicular axis theorem i.e. ( these are the moment of inertia along Z, X, Y axis respectively). The moment of inertia of the rigid body is guided by parallel axis theorem. Care should be taken in calculating the distance of separation from the centre of mass to the tangent placed.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
