
The moment of inertia of a circular disc of mass M and radius R about an axis passing through the centre of mass is \[{I_o}\]. The moment of inertia of another circular disc of the same mass and thickness but half the density about the same axis is :
A. \[\dfrac{{{I_o}}}{8}\]
B. \[\dfrac{{{I_o}}}{4}\]
C. \[2{I_o}\]
D. \[4{I_o}\]
Answer
160.8k+ views
Hint:The moment of inertia of a circular disc of mass M due to rotation about an axis passing through its centre of mass is \[M{R^2}/2\]. The density of any solid body depends upon its mass and volume. From that, it is found that density and moment of inertia are inversely proportional to each other while other physical parameters are kept constant.
Formula Used:
The moment of inertia of a circular disc of mass M due to rotation about an axis passing through its centre of mass is,
\[{I_C} = M{R^2}/2\]. ---- (1)
Where \[{I_C}\] = moment of inertia of the circular disc about an axis passing through its centre of mass
M = mass of the circular disc
R = Radius of the disc
Density, \[\rho = \dfrac{{mass}}{{volume}}\]---- (2)
Complete step by step solution:
Given: A circular disc (disc 1) of mass M and radius R with moment of inertia of the circular disc about an axis passing through its centre of mass = \[{I_o}\].
Let the thickness of this disc be t and its density be \[\rho \]. A second circular disc 2 of the same mass M and thickness t but the half density of the previous disc. Let its density be \[\rho '\] and radius \[R'\] and its moment of inertia about an axis passing through its centre of mass be \[{I_o}'\].
For disc 1
Using equation (1), we get,
\[{I_o} = M{R^2}/2\]---- (3)
And \[\text{volume} = \text{Area} \times \text{Thickness}\]\[ = \pi {R^2}t\]
Therefore, using equation (2),
\[\rho = \dfrac{\text{mass}}{\text{volume}}\]= \[\dfrac{M}{{\pi {R^2}t}}\]
\[\Rightarrow M = \pi {R^2}t.\rho \]----(4)
Substituting (4) in (3), we get,
\[{I_o} = \pi {R^4}t.\rho /2\]---(5)
For disc 2, according to the question,
\[\rho = 2\rho '\]
Therefore, its density is
\[\rho ' = \dfrac{M}{{\pi {R^{'2}}t}} = \dfrac{\rho }{2}\]
So, \[M = \dfrac{{\pi tR{'^2}t\rho }}{2}\]---- (6)
Comparing equations (4) and (6),
\[{(R')^2} = {(2R)^2}\]---(7)
\[\Rightarrow I{'_o} = \pi {\left( {R'} \right)^4}t.\rho /2 = \pi {\left( {2R} \right)^4}t.\rho /2\]----(8)
Dividing equations (5) and (8), we get,
\[\therefore {I_o}' = 2{I_{{o_{}}}}\]
Hence option C is the correct answer.
Note: Moment of inertia of a particular solid depends on the dimensions of the solid as well as the axis of rotation. If the density is halved, the moment of inertia is also impacted. To determine the moment of inertia in different reference axes of rotation, we use parallel axis theorem and perpendicular axis theorem.
Formula Used:
The moment of inertia of a circular disc of mass M due to rotation about an axis passing through its centre of mass is,
\[{I_C} = M{R^2}/2\]. ---- (1)
Where \[{I_C}\] = moment of inertia of the circular disc about an axis passing through its centre of mass
M = mass of the circular disc
R = Radius of the disc
Density, \[\rho = \dfrac{{mass}}{{volume}}\]---- (2)
Complete step by step solution:
Given: A circular disc (disc 1) of mass M and radius R with moment of inertia of the circular disc about an axis passing through its centre of mass = \[{I_o}\].
Let the thickness of this disc be t and its density be \[\rho \]. A second circular disc 2 of the same mass M and thickness t but the half density of the previous disc. Let its density be \[\rho '\] and radius \[R'\] and its moment of inertia about an axis passing through its centre of mass be \[{I_o}'\].
For disc 1
Using equation (1), we get,
\[{I_o} = M{R^2}/2\]---- (3)
And \[\text{volume} = \text{Area} \times \text{Thickness}\]\[ = \pi {R^2}t\]
Therefore, using equation (2),
\[\rho = \dfrac{\text{mass}}{\text{volume}}\]= \[\dfrac{M}{{\pi {R^2}t}}\]
\[\Rightarrow M = \pi {R^2}t.\rho \]----(4)
Substituting (4) in (3), we get,
\[{I_o} = \pi {R^4}t.\rho /2\]---(5)
For disc 2, according to the question,
\[\rho = 2\rho '\]
Therefore, its density is
\[\rho ' = \dfrac{M}{{\pi {R^{'2}}t}} = \dfrac{\rho }{2}\]
So, \[M = \dfrac{{\pi tR{'^2}t\rho }}{2}\]---- (6)
Comparing equations (4) and (6),
\[{(R')^2} = {(2R)^2}\]---(7)
\[\Rightarrow I{'_o} = \pi {\left( {R'} \right)^4}t.\rho /2 = \pi {\left( {2R} \right)^4}t.\rho /2\]----(8)
Dividing equations (5) and (8), we get,
\[\therefore {I_o}' = 2{I_{{o_{}}}}\]
Hence option C is the correct answer.
Note: Moment of inertia of a particular solid depends on the dimensions of the solid as well as the axis of rotation. If the density is halved, the moment of inertia is also impacted. To determine the moment of inertia in different reference axes of rotation, we use parallel axis theorem and perpendicular axis theorem.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
