
The minimum number of capacitors each of \[3\mu F\] required to make a circuit with an equivalent capacitance of \[2.25\mu F\] is:
(A) 3
(B) 4
(C) 5
(D) 6
Answer
206.1k+ views
Hint Here we have to connect capacitors in series, parallel or a combination of both of them to achieve the required value. Using trial and error methods combine the capacitors in combinations of series and parallel or mixed grouping and add more if the effective capacitance does not reach the required value.
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

How to Convert a Galvanometer into an Ammeter or Voltmeter

