
The minimum number of capacitors each of \[3\mu F\] required to make a circuit with an equivalent capacitance of \[2.25\mu F\] is:
(A) 3
(B) 4
(C) 5
(D) 6
Answer
131.7k+ views
Hint Here we have to connect capacitors in series, parallel or a combination of both of them to achieve the required value. Using trial and error methods combine the capacitors in combinations of series and parallel or mixed grouping and add more if the effective capacitance does not reach the required value.
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
