
The minimum number of capacitors each of \[3\mu F\] required to make a circuit with an equivalent capacitance of \[2.25\mu F\] is:
(A) 3
(B) 4
(C) 5
(D) 6
Answer
148.5k+ views
Hint Here we have to connect capacitors in series, parallel or a combination of both of them to achieve the required value. Using trial and error methods combine the capacitors in combinations of series and parallel or mixed grouping and add more if the effective capacitance does not reach the required value.
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Uniform Acceleration

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
