
The maximum refractive index of a prism which permits passage of the light through it when the refracting angle of the prism is 90°, is:
(A) $\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}$
(B) $\sqrt 2 $
(C) $\sqrt {\dfrac{3}{2}} $
(D) $\dfrac{3}{2}$
Answer
216.6k+ views
Hint: Firstly, use the formula for refractive index $\mu = \dfrac{1}{{\sin \left( {{\theta _C}} \right)}}$ and critical angle ${\theta _C} = 90 - r$ to find out sin(r) in terms of refractive index, $\mu$. Secondly, use the other formula for refractive index $\mu = \dfrac{{\sin i}}{{\sin r}}$ to find out sin(i) in terms of refractive index, $\mu $.
Lastly, use the inequality sin(i) ≤ 1, to find out the value of maximum refractive index, $\mu $.
Complete step by step solution

Let the angle of refraction be r and the critical angle for the prism be ${\theta _C}$. Now using the formula for refractive index in terms of the critical angle, ${\theta _C}$:
$\mu = \dfrac{1}{{\sin \left( {{\theta _C}} \right)}}$
Putting ${\theta _C}$= 90 – r in the above equation,
$ \Rightarrow \mu = \dfrac{1}{{\sin \left( {90 - r} \right)}}$
We know that $\sin (90 - r) = \cos r$ (from trigonometry). Putting this in the above equation,
$
\Rightarrow \mu = \dfrac{1}{{\cos r}} \\
\Rightarrow \cos r = \dfrac{1}{\mu } \\
$
Putting the value of cos(r) from the above equation in the general trigonometry relation:
$\sin r = \sqrt {1 - {{\cos }^2}r} $ gives us,
\[
\Rightarrow \sin r = \sqrt {1 - {{\left( {\dfrac{1}{\mu }} \right)}^2}} \\
\Rightarrow \sin r = \sqrt {\left( {\dfrac{{{\mu ^2} - 1}}{{{\mu ^2}}}} \right)} \\
\Rightarrow \sin r = \dfrac{{\sqrt {{\mu ^2} - 1} }}{\mu } \\
\]
Now, another formula for the refractive index is, $\mu = \dfrac{{\sin i}}{{\sin r}}$ where ‘i' is the angle of incidence.
$ \Rightarrow \sin i = \mu \times \sin r$
Now putting our value of sin(r) in the above equation,
\[
\Rightarrow \sin i = \mu \times \dfrac{{\sqrt {{\mu ^2} - 1} }}{\mu } \\
\Rightarrow \sin i = \sqrt {{\mu ^2} - 1} \\
\]
and also, $\sin i < 1$.
$
\Rightarrow \sqrt {{\mu ^2} - 1} \leqslant 1 \\
\Rightarrow {\mu ^2} - 1 \leqslant 1 \\
\Rightarrow {\mu ^2} \leqslant 2 \\
\Rightarrow \mu \leqslant \sqrt 2 \\
$
Therefore, the maximum value of the refractive index will be equal to $\sqrt 2 $ .
Hence, option (B) is correct.
Note: We are given the refracting angle of the prism to be 90° in the question. So, alternatively as a shortcut method, we can just put this in the other formula of refractive index, $\mu = \dfrac{{\sin (A + \delta \min )}}{{\sin \left( {\dfrac{A}{2}} \right)}}$.
Where, A will be 90° and $\delta \min $ will be zero.
$
\Rightarrow \mu = \dfrac{{\sin (90)}}{{\sin \left( {45} \right)}} \\
\Rightarrow \mu = \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}} \\
\Rightarrow \mu = \sqrt 2 \\
$
Lastly, use the inequality sin(i) ≤ 1, to find out the value of maximum refractive index, $\mu $.
Complete step by step solution

Let the angle of refraction be r and the critical angle for the prism be ${\theta _C}$. Now using the formula for refractive index in terms of the critical angle, ${\theta _C}$:
$\mu = \dfrac{1}{{\sin \left( {{\theta _C}} \right)}}$
Putting ${\theta _C}$= 90 – r in the above equation,
$ \Rightarrow \mu = \dfrac{1}{{\sin \left( {90 - r} \right)}}$
We know that $\sin (90 - r) = \cos r$ (from trigonometry). Putting this in the above equation,
$
\Rightarrow \mu = \dfrac{1}{{\cos r}} \\
\Rightarrow \cos r = \dfrac{1}{\mu } \\
$
Putting the value of cos(r) from the above equation in the general trigonometry relation:
$\sin r = \sqrt {1 - {{\cos }^2}r} $ gives us,
\[
\Rightarrow \sin r = \sqrt {1 - {{\left( {\dfrac{1}{\mu }} \right)}^2}} \\
\Rightarrow \sin r = \sqrt {\left( {\dfrac{{{\mu ^2} - 1}}{{{\mu ^2}}}} \right)} \\
\Rightarrow \sin r = \dfrac{{\sqrt {{\mu ^2} - 1} }}{\mu } \\
\]
Now, another formula for the refractive index is, $\mu = \dfrac{{\sin i}}{{\sin r}}$ where ‘i' is the angle of incidence.
$ \Rightarrow \sin i = \mu \times \sin r$
Now putting our value of sin(r) in the above equation,
\[
\Rightarrow \sin i = \mu \times \dfrac{{\sqrt {{\mu ^2} - 1} }}{\mu } \\
\Rightarrow \sin i = \sqrt {{\mu ^2} - 1} \\
\]
and also, $\sin i < 1$.
$
\Rightarrow \sqrt {{\mu ^2} - 1} \leqslant 1 \\
\Rightarrow {\mu ^2} - 1 \leqslant 1 \\
\Rightarrow {\mu ^2} \leqslant 2 \\
\Rightarrow \mu \leqslant \sqrt 2 \\
$
Therefore, the maximum value of the refractive index will be equal to $\sqrt 2 $ .
Hence, option (B) is correct.
Note: We are given the refracting angle of the prism to be 90° in the question. So, alternatively as a shortcut method, we can just put this in the other formula of refractive index, $\mu = \dfrac{{\sin (A + \delta \min )}}{{\sin \left( {\dfrac{A}{2}} \right)}}$.
Where, A will be 90° and $\delta \min $ will be zero.
$
\Rightarrow \mu = \dfrac{{\sin (90)}}{{\sin \left( {45} \right)}} \\
\Rightarrow \mu = \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}} \\
\Rightarrow \mu = \sqrt 2 \\
$
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

