
The mass of a planet is half that of the earth and the radius of the planet is one fourth that of earth. If we plan to send an artificial satellite from the planet, the escape velocity will be (${V_e} = 11km{s^{ - 1}}$)
A. $11km{s^{ - 1}}$
B. $5.5km{s^{ - 1}}$
C. $15.55km{s^{ - 1}}$
D. $7.78km{s^{ - 1}}$
Answer
219.6k+ views
Hint the escape velocity of the planet is $\sqrt {\dfrac{{2GM}}{r}} $where symbols have their usual meaning.
As mass and radius of the planet are given and escape velocity of the earth is also given then we will get a relation between all these and then we will get the answer.
Complete step-by-step answer:
The escape velocity of earth is given by:
${v_e} = \sqrt {\dfrac{{GM}}{R}} = 11km/s$……………………… (1)
Where, G is the universal gravitational constant i.e. $G = 6.67 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}$
M is the mass of earth
R is the radius of earth
Now, let escape velocity of planet is ${v_p} = \sqrt {\dfrac{{G{M_p}}}{{{R_p}}}} $………………… (2)
Where $M_P$ and $R_P$ is the mass and radius of the planet.
Now, it is given that the mass of planet is half that of the earth i.e. ${M_P} = \dfrac{M}{2}$
And radius of planet is one fourth of the radius of earth i.e. ${R_P} = \dfrac{R}{4}$
Substitute these values in equation (2), we get
$
\Rightarrow {V_P} = \sqrt {\dfrac{{2 \times 4 \times GM}}{{2R}}} = \sqrt 2 \times \sqrt {\dfrac{{2GM}}{R}} \\
$
Using equation (1), we get
$ \Rightarrow {V_P} = \sqrt 2 \times 11 = 1.414 \times 11 = 15.55km{s^{ - 1}}$
Thus, the escape speed of planet is ${V_P} = 15.55km{s^{ - 1}}$
Hence, C option is correct.
Note Escape velocity of an object of mass m for a planet of mass M and radius R is given by the sum of potential energy and kinetic energy and equating to zero
⇒$\dfrac{{m{v^2}}}{2} - \dfrac{{GmM}}{R} = 0$, m will cancel out and therefore escape velocity is $v = \sqrt {\dfrac{{GM}}{R}} $
As mass and radius of the planet are given and escape velocity of the earth is also given then we will get a relation between all these and then we will get the answer.
Complete step-by-step answer:
The escape velocity of earth is given by:
${v_e} = \sqrt {\dfrac{{GM}}{R}} = 11km/s$……………………… (1)
Where, G is the universal gravitational constant i.e. $G = 6.67 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}$
M is the mass of earth
R is the radius of earth
Now, let escape velocity of planet is ${v_p} = \sqrt {\dfrac{{G{M_p}}}{{{R_p}}}} $………………… (2)
Where $M_P$ and $R_P$ is the mass and radius of the planet.
Now, it is given that the mass of planet is half that of the earth i.e. ${M_P} = \dfrac{M}{2}$
And radius of planet is one fourth of the radius of earth i.e. ${R_P} = \dfrac{R}{4}$
Substitute these values in equation (2), we get
$
\Rightarrow {V_P} = \sqrt {\dfrac{{2 \times 4 \times GM}}{{2R}}} = \sqrt 2 \times \sqrt {\dfrac{{2GM}}{R}} \\
$
Using equation (1), we get
$ \Rightarrow {V_P} = \sqrt 2 \times 11 = 1.414 \times 11 = 15.55km{s^{ - 1}}$
Thus, the escape speed of planet is ${V_P} = 15.55km{s^{ - 1}}$
Hence, C option is correct.
Note Escape velocity of an object of mass m for a planet of mass M and radius R is given by the sum of potential energy and kinetic energy and equating to zero
⇒$\dfrac{{m{v^2}}}{2} - \dfrac{{GmM}}{R} = 0$, m will cancel out and therefore escape velocity is $v = \sqrt {\dfrac{{GM}}{R}} $
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction Explained: Definition, Examples & Science for Students

Analytical Method of Vector Addition Explained Simply

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

