
The mass of a planet is half that of the earth and the radius of the planet is one fourth that of earth. If we plan to send an artificial satellite from the planet, the escape velocity will be (${V_e} = 11km{s^{ - 1}}$)
A. $11km{s^{ - 1}}$
B. $5.5km{s^{ - 1}}$
C. $15.55km{s^{ - 1}}$
D. $7.78km{s^{ - 1}}$
Answer
170.4k+ views
Hint the escape velocity of the planet is $\sqrt {\dfrac{{2GM}}{r}} $where symbols have their usual meaning.
As mass and radius of the planet are given and escape velocity of the earth is also given then we will get a relation between all these and then we will get the answer.
Complete step-by-step answer:
The escape velocity of earth is given by:
${v_e} = \sqrt {\dfrac{{GM}}{R}} = 11km/s$……………………… (1)
Where, G is the universal gravitational constant i.e. $G = 6.67 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}$
M is the mass of earth
R is the radius of earth
Now, let escape velocity of planet is ${v_p} = \sqrt {\dfrac{{G{M_p}}}{{{R_p}}}} $………………… (2)
Where $M_P$ and $R_P$ is the mass and radius of the planet.
Now, it is given that the mass of planet is half that of the earth i.e. ${M_P} = \dfrac{M}{2}$
And radius of planet is one fourth of the radius of earth i.e. ${R_P} = \dfrac{R}{4}$
Substitute these values in equation (2), we get
$
\Rightarrow {V_P} = \sqrt {\dfrac{{2 \times 4 \times GM}}{{2R}}} = \sqrt 2 \times \sqrt {\dfrac{{2GM}}{R}} \\
$
Using equation (1), we get
$ \Rightarrow {V_P} = \sqrt 2 \times 11 = 1.414 \times 11 = 15.55km{s^{ - 1}}$
Thus, the escape speed of planet is ${V_P} = 15.55km{s^{ - 1}}$
Hence, C option is correct.
Note Escape velocity of an object of mass m for a planet of mass M and radius R is given by the sum of potential energy and kinetic energy and equating to zero
⇒$\dfrac{{m{v^2}}}{2} - \dfrac{{GmM}}{R} = 0$, m will cancel out and therefore escape velocity is $v = \sqrt {\dfrac{{GM}}{R}} $
As mass and radius of the planet are given and escape velocity of the earth is also given then we will get a relation between all these and then we will get the answer.
Complete step-by-step answer:
The escape velocity of earth is given by:
${v_e} = \sqrt {\dfrac{{GM}}{R}} = 11km/s$……………………… (1)
Where, G is the universal gravitational constant i.e. $G = 6.67 \times {10^{ - 11}}{m^3}k{g^{ - 1}}{s^{ - 2}}$
M is the mass of earth
R is the radius of earth
Now, let escape velocity of planet is ${v_p} = \sqrt {\dfrac{{G{M_p}}}{{{R_p}}}} $………………… (2)
Where $M_P$ and $R_P$ is the mass and radius of the planet.
Now, it is given that the mass of planet is half that of the earth i.e. ${M_P} = \dfrac{M}{2}$
And radius of planet is one fourth of the radius of earth i.e. ${R_P} = \dfrac{R}{4}$
Substitute these values in equation (2), we get
$
\Rightarrow {V_P} = \sqrt {\dfrac{{2 \times 4 \times GM}}{{2R}}} = \sqrt 2 \times \sqrt {\dfrac{{2GM}}{R}} \\
$
Using equation (1), we get
$ \Rightarrow {V_P} = \sqrt 2 \times 11 = 1.414 \times 11 = 15.55km{s^{ - 1}}$
Thus, the escape speed of planet is ${V_P} = 15.55km{s^{ - 1}}$
Hence, C option is correct.
Note Escape velocity of an object of mass m for a planet of mass M and radius R is given by the sum of potential energy and kinetic energy and equating to zero
⇒$\dfrac{{m{v^2}}}{2} - \dfrac{{GmM}}{R} = 0$, m will cancel out and therefore escape velocity is $v = \sqrt {\dfrac{{GM}}{R}} $
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solution for Class 11 Physics Chapter 3 Motion In A Plane - 2025-26
