
The magnification for a mirror is -3. How are u and v related?
Answer
137.7k+ views
Hint: Before we understand the concept of magnification in a mirror, it is important to understand the magnification is only possible in curved mirrors. In plane mirrors, the magnification is always 1 which means that the image is not enlarged or diminished in a plane mirror and always has the same size of the object. Hence, we have to consider curved mirrors only.
Complete step by step answer:
Magnification of the image is defined as the ratio of height of the image produced by the curved mirror to the ratio of height of the object.
Let us consider an object AB of height ${h_0}$ and distance -u from the pole P placed between centre of curvature C and focus F in front of a concave mirror as shown:

There are two rays emerging from the object.
i) First ray, parallel to the principal axis PA, after reflection, passes through focus.
ii) Second ray, passing through focus, after reflection, passes parallel to the principal axis.
These two rays meet beyond the centre of curvature C, to form the image GH of height ${h_i}$ at distance of -v from the pole.
Consider the triangles ABP and GHP.
$\Rightarrow \angle PAB = \angle PGH = {90^ \circ }$
By the law of reflection that incident angle equal to reflected angle, we have –
$\Rightarrow \angle APB = \angle GPH$
Hence, we can prove that the triangles ABP and GHP are similar.
By rule of similarity, we can say that –
$\Rightarrow \dfrac{{GH}}{{AB}} = \dfrac{{\left( { - v} \right)}}{{\left( { - u} \right)}}$
$ \Rightarrow \dfrac{{GH}}{{AB}} = \dfrac{v}{u}$
Given that $AB = {h_0}$ and $GH = - {h_i}$ (the negative sign is because the height of image is measured downwards direction)
Magnification is equal to the ratio of height of image of height of object.
$\Rightarrow m = \dfrac{{ - {h_i}}}{{{h_0}}}$
Substituting,
$\Rightarrow m = - \dfrac{v}{u}$
Therefore, magnification is defined as the ratio of v to u with a minus sign.
Note: The formula for the magnification in a lens is the same as that of a mirror, but only in the magnitude. The magnification formula for lenses has a positive sign while the magnification formula for a mirror has a negative sign.
Magnification for lens –
$m = \dfrac{v}{u}$
The students must understand the clear distinction between the two so that there is no confusion between the two formulae.
Complete step by step answer:
Magnification of the image is defined as the ratio of height of the image produced by the curved mirror to the ratio of height of the object.
Let us consider an object AB of height ${h_0}$ and distance -u from the pole P placed between centre of curvature C and focus F in front of a concave mirror as shown:

There are two rays emerging from the object.
i) First ray, parallel to the principal axis PA, after reflection, passes through focus.
ii) Second ray, passing through focus, after reflection, passes parallel to the principal axis.
These two rays meet beyond the centre of curvature C, to form the image GH of height ${h_i}$ at distance of -v from the pole.
Consider the triangles ABP and GHP.
$\Rightarrow \angle PAB = \angle PGH = {90^ \circ }$
By the law of reflection that incident angle equal to reflected angle, we have –
$\Rightarrow \angle APB = \angle GPH$
Hence, we can prove that the triangles ABP and GHP are similar.
By rule of similarity, we can say that –
$\Rightarrow \dfrac{{GH}}{{AB}} = \dfrac{{\left( { - v} \right)}}{{\left( { - u} \right)}}$
$ \Rightarrow \dfrac{{GH}}{{AB}} = \dfrac{v}{u}$
Given that $AB = {h_0}$ and $GH = - {h_i}$ (the negative sign is because the height of image is measured downwards direction)
Magnification is equal to the ratio of height of image of height of object.
$\Rightarrow m = \dfrac{{ - {h_i}}}{{{h_0}}}$
Substituting,
$\Rightarrow m = - \dfrac{v}{u}$
Therefore, magnification is defined as the ratio of v to u with a minus sign.
Note: The formula for the magnification in a lens is the same as that of a mirror, but only in the magnitude. The magnification formula for lenses has a positive sign while the magnification formula for a mirror has a negative sign.
Magnification for lens –
$m = \dfrac{v}{u}$
The students must understand the clear distinction between the two so that there is no confusion between the two formulae.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE
