
The magnetic field is made radial in a galvanometer
(A) To make field stronger
(B) To make field weaker
(C) To make scale linear
(D) To reduce its resistance
Answer
155.4k+ views
Hint: The magnetic field is made radial in a galvanometer to concentrate the field in a circular region uniformly in all directions and hence, make it linear in angular direction.
Complete step by step solution
Let us briefly recap what the purpose and design goal of a galvanometer is and what is the purpose of the radial magnetic field in it. The moving coil galvanometer consists of a rectangular coil with a huge number of windings of a thin insulated copper wire. This coil is suspended between the poles of a permanent magnet having hemispherical poles (like in a horseshoe magnet). The purpose of making the poles hemispherical is to apply a uniform radial magnetic field over the coil.
Had the magnetic field not been radial, the magnetic field and eventually, the magnetic flux through the coil would vary at different angular positions of the coil. Hence there would be unnecessary spikes and unresponsiveness in the galvanometer. We need the rotation to be smooth i.e. the angle of rotation should increase linearly with increase in the current.
Therefore, option (C) is the correct option.
Note: Here is a diagram of a moving coil galvanometer for better understanding.

As you can see from the diagram, a radial magnetic field will ensure that there is always a component of magnetic field perpendicular to the plane of the coil to ensure maximum magnetic flux/field/torque.
Complete step by step solution
Let us briefly recap what the purpose and design goal of a galvanometer is and what is the purpose of the radial magnetic field in it. The moving coil galvanometer consists of a rectangular coil with a huge number of windings of a thin insulated copper wire. This coil is suspended between the poles of a permanent magnet having hemispherical poles (like in a horseshoe magnet). The purpose of making the poles hemispherical is to apply a uniform radial magnetic field over the coil.
Had the magnetic field not been radial, the magnetic field and eventually, the magnetic flux through the coil would vary at different angular positions of the coil. Hence there would be unnecessary spikes and unresponsiveness in the galvanometer. We need the rotation to be smooth i.e. the angle of rotation should increase linearly with increase in the current.
Therefore, option (C) is the correct option.
Note: Here is a diagram of a moving coil galvanometer for better understanding.

As you can see from the diagram, a radial magnetic field will ensure that there is always a component of magnetic field perpendicular to the plane of the coil to ensure maximum magnetic flux/field/torque.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Electrical Field of Charged Spherical Shell - JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic
