
The line which is parallel to the x-axis and crosses the curve $y=\sqrt{x}$ at an angle of $45{}^\circ $ is equal to
A. $x=\dfrac{1}{4}$
B. $y=\dfrac{1}{4}$
C. $y=\dfrac{1}{2}$
D. $y=1$
Answer
216k+ views
Hint: In this question, we are to find the equation of the line that is parallel to the x-axis and crosses a curve at an angle. In order to find this, we need to consider the line parallel to the x-axis as $y=k$. By using this, we can frame the required equation.
Formula used: The equation of the x-axis is $y=0$.
The slope of a line is $m=\tan \theta $
The slope of a curve is
$m={{\left( \dfrac{dy}{dx} \right)}_{P(x,y)}}$
Complete step by step solution: Consider the equation of the line that is parallel to the x-axis is
$y=k\text{ }...(1)$
It is given that equation (1) crosses the curve $y=\sqrt{x}\text{ }...(2)$
So, their point of intersection is calculated by substituting (1) in (2)
$\begin{align}
& y=\sqrt{x} \\
& \Rightarrow \sqrt{x}=k \\
& \Rightarrow x={{k}^{2}} \\
\end{align}$
Thus, the point of intersection is $({{k}^{2}},k)$
The slope of (2) is calculated by
$m={{\left( \dfrac{dy}{dx} \right)}_{P(x,y)}}$
(Since it is a curve, we use derivation)
$\begin{align}
& m={{\left( \dfrac{d}{dx}\sqrt{x} \right)}_{({{k}^{2}},k)}} \\
& \text{ }={{\left( \dfrac{1}{2\sqrt{x}} \right)}_{_{({{k}^{2}},k)}}} \\
& \text{ }=\dfrac{1}{2\sqrt{{{k}^{2}}}} \\
& \text{ }=\dfrac{1}{2k} \\
\end{align}$
Since it is given these two intersects at an angle of $45{}^\circ $, we get
$\begin{align}
& m=\tan \theta \\
& \text{ }=\tan 45{}^\circ \\
& \text{ }=1 \\
\end{align}$
Then, we can write
$\begin{align}
& 1=\dfrac{1}{2k} \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}$
Therefore, the equation is $y=\dfrac{1}{2}$
Thus, Option (C) is correct.
Note: Here we need to remember that the line parallel to the x-axis is $y=k$. Since the line crosses and intersects a curve, the derivative function at the point of intersection gives the slope of the curve. With all these, we are able to frame the equation of the line.
Formula used: The equation of the x-axis is $y=0$.
The slope of a line is $m=\tan \theta $
The slope of a curve is
$m={{\left( \dfrac{dy}{dx} \right)}_{P(x,y)}}$
Complete step by step solution: Consider the equation of the line that is parallel to the x-axis is
$y=k\text{ }...(1)$
It is given that equation (1) crosses the curve $y=\sqrt{x}\text{ }...(2)$
So, their point of intersection is calculated by substituting (1) in (2)
$\begin{align}
& y=\sqrt{x} \\
& \Rightarrow \sqrt{x}=k \\
& \Rightarrow x={{k}^{2}} \\
\end{align}$
Thus, the point of intersection is $({{k}^{2}},k)$
The slope of (2) is calculated by
$m={{\left( \dfrac{dy}{dx} \right)}_{P(x,y)}}$
(Since it is a curve, we use derivation)
$\begin{align}
& m={{\left( \dfrac{d}{dx}\sqrt{x} \right)}_{({{k}^{2}},k)}} \\
& \text{ }={{\left( \dfrac{1}{2\sqrt{x}} \right)}_{_{({{k}^{2}},k)}}} \\
& \text{ }=\dfrac{1}{2\sqrt{{{k}^{2}}}} \\
& \text{ }=\dfrac{1}{2k} \\
\end{align}$
Since it is given these two intersects at an angle of $45{}^\circ $, we get
$\begin{align}
& m=\tan \theta \\
& \text{ }=\tan 45{}^\circ \\
& \text{ }=1 \\
\end{align}$
Then, we can write
$\begin{align}
& 1=\dfrac{1}{2k} \\
& \Rightarrow k=\dfrac{1}{2} \\
\end{align}$
Therefore, the equation is $y=\dfrac{1}{2}$
Thus, Option (C) is correct.
Note: Here we need to remember that the line parallel to the x-axis is $y=k$. Since the line crosses and intersects a curve, the derivative function at the point of intersection gives the slope of the curve. With all these, we are able to frame the equation of the line.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

NCERT Solutions for Class 11 Maths Chapter Chapter 4 Complex Numbers And Quadratic Equations

NCERT Solutions For Class 11 Maths Chapter 14 Probability - 2025-26

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

