
The length of the air column in a capillary glass tube closed at one end containing mercury pellet $10\;{\text{cm}}$ long are $43\;{\text{cm}}$ and $33\;{\text{cm}}$ respectively with the close end up and down. The atmospheric pressure is:
A) $75\;{\text{cm}}$ of Hg
B) $77\;{\text{cm}}$ of Hg
C) $70\;{\text{cm}}$ of Hg
D) $100\;{\text{cm}}$ of Hg
Answer
162k+ views
Hint: The above problem can be solved by using the principle of balancing the pressure in both the pellet of the mercury. The density of the mercury is the same for both pellets, so the volume of the mercury should be equal to balance the pressure in both pellets.
Complete step by step solution:
Given: The length of the air column in capillary glass tube closed at one end is $l = 10\;{\text{cm}}$, the length of the one pellet is ${l_1} = 43\;{\text{cm}}$, the length of the other pellet is ${l_2} = 33\;{\text{cm}}$.
Let the density of the mercury in both pellets is $\rho $, the length of the atmospheric column of the mercury is y and the area of both the pellets is A.
The pressure in the one pellet is given by the equation as:
${P_1} = \rho {l_1}A\left( {y - l} \right)......\left( 1 \right)$
The pressure in the other pellet is given by the equation as:
${P_2} = \rho {l_2}A\left( {y + l} \right)......\left( 2 \right)$
Equate the equation (1) and equation (2) to find the equation for the length of the atmospheric column.
${P_1} = {P_2}$
$\rho {l_1}A\left( {y - l} \right) = \rho {l_2}A\left( {y + l} \right)$
${l_1}\left( {y - l} \right) = {l_2}\left( {y + l} \right)......\left( 3 \right)$
Substitute $43\;{\text{cm}}$ for ${l_1}$, $33\;{\text{cm}}$ for ${l_2}$and $10\;{\text{cm}}$ in the equation (3) to find the length of atmospheric column.
$\left( {43\;{\text{cm}}} \right)\left( {y - 10\;{\text{cm}}} \right) = \left( {33\;{\text{cm}}} \right)\left( {y + 10\;{\text{cm}}} \right)$
$y - 10\;{\text{cm}} = \left( {0.77} \right)\left( {y + 10\;{\text{cm}}} \right)$
$y - 10\;{\text{cm}} = 0.77y + 7.7\;{\text{cm}}$
$0.23y = 17.7\;{\text{cm}}$
$y = 76.96\;{\text{cm}}$
$y \approx 77\;{\text{cm}}$
Thus, the atmospheric pressure in glass tubes is $77\;{\text{cm}}$ of Hg and the option (B) is the correct answer.
Note: Be careful in putting the values of the length of both pellets in the appropriate equation to find the atmospheric pressure in the pellet.
Complete step by step solution:
Given: The length of the air column in capillary glass tube closed at one end is $l = 10\;{\text{cm}}$, the length of the one pellet is ${l_1} = 43\;{\text{cm}}$, the length of the other pellet is ${l_2} = 33\;{\text{cm}}$.
Let the density of the mercury in both pellets is $\rho $, the length of the atmospheric column of the mercury is y and the area of both the pellets is A.
The pressure in the one pellet is given by the equation as:
${P_1} = \rho {l_1}A\left( {y - l} \right)......\left( 1 \right)$
The pressure in the other pellet is given by the equation as:
${P_2} = \rho {l_2}A\left( {y + l} \right)......\left( 2 \right)$
Equate the equation (1) and equation (2) to find the equation for the length of the atmospheric column.
${P_1} = {P_2}$
$\rho {l_1}A\left( {y - l} \right) = \rho {l_2}A\left( {y + l} \right)$
${l_1}\left( {y - l} \right) = {l_2}\left( {y + l} \right)......\left( 3 \right)$
Substitute $43\;{\text{cm}}$ for ${l_1}$, $33\;{\text{cm}}$ for ${l_2}$and $10\;{\text{cm}}$ in the equation (3) to find the length of atmospheric column.
$\left( {43\;{\text{cm}}} \right)\left( {y - 10\;{\text{cm}}} \right) = \left( {33\;{\text{cm}}} \right)\left( {y + 10\;{\text{cm}}} \right)$
$y - 10\;{\text{cm}} = \left( {0.77} \right)\left( {y + 10\;{\text{cm}}} \right)$
$y - 10\;{\text{cm}} = 0.77y + 7.7\;{\text{cm}}$
$0.23y = 17.7\;{\text{cm}}$
$y = 76.96\;{\text{cm}}$
$y \approx 77\;{\text{cm}}$
Thus, the atmospheric pressure in glass tubes is $77\;{\text{cm}}$ of Hg and the option (B) is the correct answer.
Note: Be careful in putting the values of the length of both pellets in the appropriate equation to find the atmospheric pressure in the pellet.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
