
The length of second pendulum is:
A) $100\,cm$
B) $99\,cm$
C) $99.4\,cm$
D) $98\,cm$
Answer
220.8k+ views
Hint: Use the formula of the time period of the pendulum and substitute the value of the length of the pendulum as $2\,s$ and the acceleration due to gravity as $9.8$. The obtained equation is simplified, to obtain the value of the length of the pendulum.
Formula used:
The time period is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where $T$ is the time period of the pendulum, $l$ is the length of the pendulum and $g$ is the acceleration due to gravity.
Complete step by step solution:
It is known that the time period of the second pendulum is $2\,s$ .

Using the formula of the time period ,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Substituting the values of the time period of the pendulum as $2\,s$ and the acceleration due to gravity as the $9.8\,m{s^{ - 2}}$ in the above formula.
$2 = 2\pi \sqrt {\dfrac{l}{{9.8}}} $
By grouping the known parameters in one side and the unknown parameter in the other side.
$\sqrt l = \dfrac{{2 \times \sqrt {9.8} }}{{2\pi }}$
By taking a square on both sides of the equation, to find the value of the length of the pendulum.
$l = \dfrac{{4 \times 9.8}}{{4{\pi ^2}}}$
By the simplification of the above step,
$l = \dfrac{{9.8}}{{{\pi ^2}}}$
It is known that the value of the $\pi = 3.14$ in the above step,
$l = \dfrac{{9.8}}{{{{3.14}^2}}}$
By the further simplification,
$l = 0.994\,m$
All the options given in the question contain the units in the centimeter. But the obtained answer is in meters. So the obtained answer is converted into the centimeter unit.
$l = 99.4\,cm$
Thus the option (C) is correct.
Note: When the pendulum swings from one side to the other side, it takes two seconds to reach the other side. Since the pendulum takes the same time, but the maximum distance is covered at the high speed and the minimum distance is covered at the low speed.
Formula used:
The time period is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where $T$ is the time period of the pendulum, $l$ is the length of the pendulum and $g$ is the acceleration due to gravity.
Complete step by step solution:
It is known that the time period of the second pendulum is $2\,s$ .

Using the formula of the time period ,
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Substituting the values of the time period of the pendulum as $2\,s$ and the acceleration due to gravity as the $9.8\,m{s^{ - 2}}$ in the above formula.
$2 = 2\pi \sqrt {\dfrac{l}{{9.8}}} $
By grouping the known parameters in one side and the unknown parameter in the other side.
$\sqrt l = \dfrac{{2 \times \sqrt {9.8} }}{{2\pi }}$
By taking a square on both sides of the equation, to find the value of the length of the pendulum.
$l = \dfrac{{4 \times 9.8}}{{4{\pi ^2}}}$
By the simplification of the above step,
$l = \dfrac{{9.8}}{{{\pi ^2}}}$
It is known that the value of the $\pi = 3.14$ in the above step,
$l = \dfrac{{9.8}}{{{{3.14}^2}}}$
By the further simplification,
$l = 0.994\,m$
All the options given in the question contain the units in the centimeter. But the obtained answer is in meters. So the obtained answer is converted into the centimeter unit.
$l = 99.4\,cm$
Thus the option (C) is correct.
Note: When the pendulum swings from one side to the other side, it takes two seconds to reach the other side. Since the pendulum takes the same time, but the maximum distance is covered at the high speed and the minimum distance is covered at the low speed.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Uniform Acceleration in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

Understanding Entropy Changes in Different Processes

Other Pages
NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Charging and Discharging of Capacitors

Free Radical Substitution and Its Stepwise Mechanism

