
The length of a wire required to manufacture a solenoid of length $l$ and self- induction $L$ is (cross- sectional area is negligible)
A) $\sqrt {\dfrac{{2\pi Ll}}{{{\mu _0}}}} $
B) $\sqrt {\dfrac{{{\mu _0}Ll}}{{4\pi }}} $
C) $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
D) $\sqrt {\dfrac{{{\mu _0}Ll}}{{2\pi }}} $
Answer
232.8k+ views
Hint: Use the formula of the self-induction of the solenoid given below, substitute the formula of the length of the wire and the area of the wire in the above formula and simplify it to obtain the relation for the self-induction of the solenoid.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding How a Current Loop Acts as a Magnetic Dipole

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Electric field due to uniformly charged sphere class 12 physics JEE_Main

