Answer
Verified
85.5k+ views
Hint: Use the formula of the self-induction of the solenoid given below, substitute the formula of the length of the wire and the area of the wire in the above formula and simplify it to obtain the relation for the self-induction of the solenoid.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Two blocks are in contact on a frictionless table One class 11 physics JEE_Main
The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main
A vector of 10N makes an angle of 30circ with positive class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
If a gas expands at constant temperature it indicates class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main