The length of a wire required to manufacture a solenoid of length $l$ and self- induction $L$ is (cross- sectional area is negligible)
A) $\sqrt {\dfrac{{2\pi Ll}}{{{\mu _0}}}} $
B) $\sqrt {\dfrac{{{\mu _0}Ll}}{{4\pi }}} $
C) $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
D) $\sqrt {\dfrac{{{\mu _0}Ll}}{{2\pi }}} $
Answer
Verified
117.9k+ views
Hint: Use the formula of the self-induction of the solenoid given below, substitute the formula of the length of the wire and the area of the wire in the above formula and simplify it to obtain the relation for the self-induction of the solenoid.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
JEE Main Chemistry Exam Pattern 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
A combination of five resistors is connected to a cell class 12 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
A shortcircuited coil is placed in a timevarying magnetic class 12 physics JEE_Main