Answer
Verified
88.2k+ views
Hint: It is known to us that a potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat. The Potentiometer is an electric instrument used to measure the EMF (electromotive force) of a given cell, the internal resistance of a cell. And also, it is used to compare the EMFs of different cells. It can also be used as a variable resistor in most of the applications. Potentiometers are commonly used to control electrical devices such as volume controls on audio equipment. Potentiometers operated by a mechanism can be used as position transducers, for example, in a joystick.
Complete step by step answer
It is known to us that the electric potential, or voltage, is the difference in potential energy per unit charge between two locations in an electric field. A potential is a scalar field that describes the potential energy per unit of some quantity due to a vector field. It is closely related to potential energy. The higher potential is the point of higher concentration of charges and lower potential is the point with a lesser concentration of charges. Hence considered the point which is more positive as a higher potential point.
We can also say that the electric potential is the electric potential energy of a test charge divided by its charge for every location in space. Because it's derived from energy, it's a scalar field. These two fields are related. The electric field and electric potential are related by displacement.
Let us consider that $\mathrm{V}$ be the potential across the balance point and one end of wire.
Hence according to the principle of potentiometer $\mathrm{V} \propto \mathrm{l}$
Also, if a cell of emf $\mathrm{E}$ is employed in the circuit between the ends of potentiometer wire of length $\mathrm{L}$ then $\mathrm{E} \propto \mathrm{L}$
Therefore, $\dfrac{\mathrm{V}}{\mathrm{E}}=\dfrac{\mathrm{l}}{\mathrm{L}}$
$\mathrm{V}=\dfrac{1}{\mathrm{L}} \mathrm{E}=\dfrac{30}{100} \mathrm{E}=\dfrac{30 \mathrm{E}}{100}$
So, the correct answer is option A.
Note: We know that the potentiometer consists of L which is a long resistive wire and a battery of known EMF V whose voltage is known as driver cell voltage. One end of the primary circuit is connected to the cell whose EMF E is to be measured and the other end is connected to galvanometer G. A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat. The potentiometer works on the principle that when a constant current flows through a wire of uniform cross-sectional area, potential difference between its two points is directly proportional to the length of the wire between the two points.
Complete step by step answer
It is known to us that the electric potential, or voltage, is the difference in potential energy per unit charge between two locations in an electric field. A potential is a scalar field that describes the potential energy per unit of some quantity due to a vector field. It is closely related to potential energy. The higher potential is the point of higher concentration of charges and lower potential is the point with a lesser concentration of charges. Hence considered the point which is more positive as a higher potential point.
We can also say that the electric potential is the electric potential energy of a test charge divided by its charge for every location in space. Because it's derived from energy, it's a scalar field. These two fields are related. The electric field and electric potential are related by displacement.
Let us consider that $\mathrm{V}$ be the potential across the balance point and one end of wire.
Hence according to the principle of potentiometer $\mathrm{V} \propto \mathrm{l}$
Also, if a cell of emf $\mathrm{E}$ is employed in the circuit between the ends of potentiometer wire of length $\mathrm{L}$ then $\mathrm{E} \propto \mathrm{L}$
Therefore, $\dfrac{\mathrm{V}}{\mathrm{E}}=\dfrac{\mathrm{l}}{\mathrm{L}}$
$\mathrm{V}=\dfrac{1}{\mathrm{L}} \mathrm{E}=\dfrac{30}{100} \mathrm{E}=\dfrac{30 \mathrm{E}}{100}$
So, the correct answer is option A.
Note: We know that the potentiometer consists of L which is a long resistive wire and a battery of known EMF V whose voltage is known as driver cell voltage. One end of the primary circuit is connected to the cell whose EMF E is to be measured and the other end is connected to galvanometer G. A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat. The potentiometer works on the principle that when a constant current flows through a wire of uniform cross-sectional area, potential difference between its two points is directly proportional to the length of the wire between the two points.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Assertion An electron is not deflected on passing through class 12 physics JEE_Main
A crystalline solid a Changes abruptly from solid to class 12 chemistry JEE_Main
The ratio of the diameters of certain air bubbles at class 11 physics JEE_Main