
The length of a tube of microscope is $10cm$. The lengths of the objective and the eye lenses are $0.5cm$ and $1cm$ respectively. The magnifying power of the microscope when the images at far point is about
(A) 5
(B) 23
(C) 166
(D) 500
Answer
219.3k+ views
Hint: This question is based on the magnifying power of a compound microscope. To solve this we just need to use the formula for normal adjustment which is given by, $m = \dfrac{{{v_o}}}{{{u_o}}}\dfrac{D}{{{f_e}}}$ and then we need to substitute the values of the objective and the eye lenses, length of a tube of microscope from the question and use the value of $D$ as $25cm$.
Formula Used:
$m = \dfrac{{{v_o}}}{{{u_o}}}\dfrac{D}{{{f_e}}}$
where $m$ is magnification
${v_o}$ is image distance
\[{u_o}\] is object distance
$D$ is the distance for distinct vision
${f_e}$ is the focal length of the eye-piece lens.
Complete Step by Step Solution:
From the question, we can see that,
The length of the tube of the microscope, that is the distance between the objective lens and the eye lens
$L = 10cm$
The focal length of the objective lens is ${f_o} = 0.5cm$
and the focal length of the eye lens is ${f_e} = 1.0cm$
It is said in the question that we need to find the magnifying power of the microscope when the image is formed at a faraway point. So here we can use the formula for normal adjustment, which is given by,
$m = \dfrac{{{v_o}}}{{{u_o}}}\dfrac{D}{{{f_e}}}$
Here for the value of $D$ we can take $25cm$as $D$is the distance for distinct vision.
Now in this case we can take ${v_o}$, which is the image distance as similar to $L$ and the value of ${u_o}$, which is the object distance will be equal to the focal length of the objective lens, that is ${f_o}$.
Therefore by putting these in the equation we get,
$m = \dfrac{L}{{{f_o}}}\dfrac{D}{{{f_e}}}$
Now all these values are given in the question. So substituting these values in the equation we get,
$m = \dfrac{{10}}{{0.5}} \times \dfrac{{25}}{1}$
$ \Rightarrow m = \dfrac{{2500}}{5}$
By calculating this we get the value of magnification as,
$m = 500$
So the correct value of $m$ is $500$. And the correct answer is option D.
Note: Here we have used the value of the distance for distinct vision as $D = 25cm$. This is the average value that is considered for a human adult. For children, this value may vary to be $15cm$and in old people, the value might increase up to an extent of $40cm$. But for the sake of calculation, we take the average as $25cm$.
Formula Used:
$m = \dfrac{{{v_o}}}{{{u_o}}}\dfrac{D}{{{f_e}}}$
where $m$ is magnification
${v_o}$ is image distance
\[{u_o}\] is object distance
$D$ is the distance for distinct vision
${f_e}$ is the focal length of the eye-piece lens.
Complete Step by Step Solution:
From the question, we can see that,
The length of the tube of the microscope, that is the distance between the objective lens and the eye lens
$L = 10cm$
The focal length of the objective lens is ${f_o} = 0.5cm$
and the focal length of the eye lens is ${f_e} = 1.0cm$
It is said in the question that we need to find the magnifying power of the microscope when the image is formed at a faraway point. So here we can use the formula for normal adjustment, which is given by,
$m = \dfrac{{{v_o}}}{{{u_o}}}\dfrac{D}{{{f_e}}}$
Here for the value of $D$ we can take $25cm$as $D$is the distance for distinct vision.
Now in this case we can take ${v_o}$, which is the image distance as similar to $L$ and the value of ${u_o}$, which is the object distance will be equal to the focal length of the objective lens, that is ${f_o}$.
Therefore by putting these in the equation we get,
$m = \dfrac{L}{{{f_o}}}\dfrac{D}{{{f_e}}}$
Now all these values are given in the question. So substituting these values in the equation we get,
$m = \dfrac{{10}}{{0.5}} \times \dfrac{{25}}{1}$
$ \Rightarrow m = \dfrac{{2500}}{5}$
By calculating this we get the value of magnification as,
$m = 500$
So the correct value of $m$ is $500$. And the correct answer is option D.
Note: Here we have used the value of the distance for distinct vision as $D = 25cm$. This is the average value that is considered for a human adult. For children, this value may vary to be $15cm$and in old people, the value might increase up to an extent of $40cm$. But for the sake of calculation, we take the average as $25cm$.
Recently Updated Pages
Relations and Functions: Complete Guide for Students

Froth Flotation Principle and Process Important Concepts and Tips for JEE

Covalent Character in Ionic Compounds Important Concepts for JEE

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 1) Maths Question Paper with Answer Key

Colour of Ions and Precipitates Important For JEE

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Diffraction of Light - Young’s Single Slit Experiment

JEE Main 2025-26 Mock Test: Ultimate Practice Guide for Aspirants

