
The ionization constant of acetic acid is$\text{1}\text{.8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}$. The concentration at which it will be dissociated to $2{\scriptstyle{}^{0}/{}_{0}}$ is:
A) \[\text{1M}\]
B) \[\text{0}\text{.045M}\]
C) \[\text{0}\text{.018M}\]
D) \[\text{0}\text{.45M}\]
Answer
152.4k+ views
Hint: The weak acids do not undergo the complete dissociation. The dissociation constant or ionization constant ${{\text{K}}_{\text{a}}}$is directly proportional to the square of the degree of dissociation $(\alpha )$ and concentration of the solution. Thus substitute the values and get the unknown quantity.
Complete step by step solution:
We know that the acetic acid when dissolved in water does not undergo the complete dissociation. Here we are given that it is partially dissociated into the water. The acetic acid has dissociated to $2{\scriptstyle{}^{0}/{}_{0}}$ of its total concentration.
We are provided with the ionization constant ${{\text{K}}_{\text{a}}}$ of the acid.
${{\text{K}}_{\text{a}}}\text{= 1}\text{.8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}$
The acid ionization constant i.e. ${{\text{K}}_{\text{a}}}$is the equilibrium constant between the ionized and unionized acid. It represents the fraction in which the undissociated acid ionized into the solution. It reflects the strength of the acid.
We know that the acetic acid undergoes the incomplete dissociation. It dissociates into the acetate ion \[\text{CH3CO}{{\text{O}}^{-}}\]and proton\[{{\text{H}}^{\text{+}}}\]. Since acetic acid is weak acid the equilibrium constant is always towards the reactant side. The acetate ion and proton can combine to again regenerate the acetic acid. Therefore, the dissociation of acid as shown below,
\[\begin{matrix}
{} & \text{C}{{\text{H}}_{\text{3}}}\text{COOH} & \rightleftarrows & \text{CH3CO}{{\text{O}}^{-}} & \text{+} \\
\text{Before dissociation} & \text{C} & {} & \text{0} & {} \\
\text{After dissociation} & \text{(1- }\!\!\alpha\!\!\text{ )C} & {} & \text{ }\!\!\alpha\!\!\text{ C} & {} \\
\end{matrix}\begin{matrix}
\text{ }{{\text{H}}^{\text{+}}} \\
\text{ 0} \\
\text{ }\!\!\alpha\!\!\text{ C} \\
\end{matrix}\]
The ionization constant can be written as,
$\begin{align}
& \text{Ka = }\dfrac{\text{Conc}\text{. of dissociated species}}{\text{Con}\text{.of undissociated specie}}\text{ } \\
& \text{ = }\dfrac{\left( \text{ }\!\!\alpha\!\!\text{ } \right)\left( \text{ }\!\!\alpha\!\!\text{ C} \right)}{\left( \text{1- }\!\!\alpha\!\!\text{ } \right)\text{}} \\
& \therefore \text{Ka= }\dfrac{\left( {{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}} \right)}{\left( \text{1- }\!\!\alpha\!\!\text{ } \right)}\text{C} \\
\end{align}$
The value of α is very small compared to 1. That is $\alpha \ll 1$ thus we neglect the term α from the denominator. We get,
$\text{Ka= }{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}\text{C}$
We know that the acetic acid dissociates to the $2{\scriptstyle{}^{0}/{}_{0}}$. Therefore, the degree of dissociation $(\alpha )$ will be:
$\alpha =\dfrac{2}{100}=\text{ 0}\text{.02}$
We are interested to find the value of the concentration of acetic acid. Thus rearrange the equation of the ionization constant for concentration. We have,
$\begin{align}
& \text{Ka= }{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}\text{C} \\
& \Rightarrow \text{C = }\dfrac{\text{Ka}}{{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}} \\
\end{align}$
Let us substitute the values in the rearranged equation. We get,
$\begin{align}
& \text{C = }\dfrac{\text{Ka}}{{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}} \\
& \text{C}=\dfrac{1.8\times {{10}^{-5}}}{{{\left( 0.02 \right)}^{2}}} \\
& C=\dfrac{1.8\times {{10}^{-5}}}{4\times {{10}^{-4}}} \\
& \therefore \text{C = 0}\text{.045 M} \\
\end{align}$
Therefore the concentration of acetic acid is$\text{0}\text{.0467 M}$.
Hence, (B) is the correct option.
Note: The degree of dissociation for a weak acid is very small compared to the unity thus it is always negligible. Similarly, it is applicable for weak bases. Remember that such types of questions can be extended to calculate the pH value of acid.
Complete step by step solution:
We know that the acetic acid when dissolved in water does not undergo the complete dissociation. Here we are given that it is partially dissociated into the water. The acetic acid has dissociated to $2{\scriptstyle{}^{0}/{}_{0}}$ of its total concentration.
We are provided with the ionization constant ${{\text{K}}_{\text{a}}}$ of the acid.
${{\text{K}}_{\text{a}}}\text{= 1}\text{.8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{-5}}$
The acid ionization constant i.e. ${{\text{K}}_{\text{a}}}$is the equilibrium constant between the ionized and unionized acid. It represents the fraction in which the undissociated acid ionized into the solution. It reflects the strength of the acid.
We know that the acetic acid undergoes the incomplete dissociation. It dissociates into the acetate ion \[\text{CH3CO}{{\text{O}}^{-}}\]and proton\[{{\text{H}}^{\text{+}}}\]. Since acetic acid is weak acid the equilibrium constant is always towards the reactant side. The acetate ion and proton can combine to again regenerate the acetic acid. Therefore, the dissociation of acid as shown below,
\[\begin{matrix}
{} & \text{C}{{\text{H}}_{\text{3}}}\text{COOH} & \rightleftarrows & \text{CH3CO}{{\text{O}}^{-}} & \text{+} \\
\text{Before dissociation} & \text{C} & {} & \text{0} & {} \\
\text{After dissociation} & \text{(1- }\!\!\alpha\!\!\text{ )C} & {} & \text{ }\!\!\alpha\!\!\text{ C} & {} \\
\end{matrix}\begin{matrix}
\text{ }{{\text{H}}^{\text{+}}} \\
\text{ 0} \\
\text{ }\!\!\alpha\!\!\text{ C} \\
\end{matrix}\]
The ionization constant can be written as,
$\begin{align}
& \text{Ka = }\dfrac{\text{Conc}\text{. of dissociated species}}{\text{Con}\text{.of undissociated specie}}\text{ } \\
& \text{ = }\dfrac{\left( \text{ }\!\!\alpha\!\!\text{ } \right)\left( \text{ }\!\!\alpha\!\!\text{ C} \right)}{\left( \text{1- }\!\!\alpha\!\!\text{ } \right)\text{}} \\
& \therefore \text{Ka= }\dfrac{\left( {{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}} \right)}{\left( \text{1- }\!\!\alpha\!\!\text{ } \right)}\text{C} \\
\end{align}$
The value of α is very small compared to 1. That is $\alpha \ll 1$ thus we neglect the term α from the denominator. We get,
$\text{Ka= }{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}\text{C}$
We know that the acetic acid dissociates to the $2{\scriptstyle{}^{0}/{}_{0}}$. Therefore, the degree of dissociation $(\alpha )$ will be:
$\alpha =\dfrac{2}{100}=\text{ 0}\text{.02}$
We are interested to find the value of the concentration of acetic acid. Thus rearrange the equation of the ionization constant for concentration. We have,
$\begin{align}
& \text{Ka= }{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}\text{C} \\
& \Rightarrow \text{C = }\dfrac{\text{Ka}}{{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}} \\
\end{align}$
Let us substitute the values in the rearranged equation. We get,
$\begin{align}
& \text{C = }\dfrac{\text{Ka}}{{{\text{ }\!\!\alpha\!\!\text{ }}^{\text{2}}}} \\
& \text{C}=\dfrac{1.8\times {{10}^{-5}}}{{{\left( 0.02 \right)}^{2}}} \\
& C=\dfrac{1.8\times {{10}^{-5}}}{4\times {{10}^{-4}}} \\
& \therefore \text{C = 0}\text{.045 M} \\
\end{align}$
Therefore the concentration of acetic acid is$\text{0}\text{.0467 M}$.
Hence, (B) is the correct option.
Note: The degree of dissociation for a weak acid is very small compared to the unity thus it is always negligible. Similarly, it is applicable for weak bases. Remember that such types of questions can be extended to calculate the pH value of acid.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5

Displacement-Time Graph and Velocity-Time Graph for JEE
