
The inverse of matrix A= $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ is
A. A
B.${{A}^{T}} $
C. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{0} & {1} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$
D. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{1} & {0} &{0} \\
{0} & {1} & {0} \\
\end{matrix} \right]$
Answer
216.3k+ views
Hint:
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
Amortization Calculator – Loan Schedule, EMI & Table

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

