
The inverse of matrix A= $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ is
A. A
B.${{A}^{T}} $
C. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{0} & {1} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$
D. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{1} & {0} &{0} \\
{0} & {1} & {0} \\
\end{matrix} \right]$
Answer
163.5k+ views
Hint:
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
