
The inverse of matrix A= $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ is
A. A
B.${{A}^{T}} $
C. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{0} & {1} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$
D. $\left [ \begin{matrix}
{1} & {0} & {0} \\
{1} & {0} &{0} \\
{0} & {1} & {0} \\
\end{matrix} \right]$
Answer
233.1k+ views
Hint:
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
We have to find ${{A}^{-1}}$ of this 3×3 matrix $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ , so for that we will solve for $adjA$ and $|A|$. And then dividing both of them will get our required solution. As for finding ${{A}^{-1}}$ the formula suggests ${{A}^{-1}}=\dfrac{adjA}{|A|}$.
Formula Used:
${{A}^{-1}}=\dfrac{adjA}{|A|}$
$|A|$ = $[{{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}})-{{a}_{12}}({{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}})+{{a}_{13}}({{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}})]$
Complete step-by-step Solution:
We are given matrix $A$ = $\left [ \begin{matrix}
{0} & {1} & {0} \\
{1} & {0} &{0} \\
{0} & {0} & {1} \\
\end{matrix} \right]$ and we have to find ${{A}^ {-1}} $
So first of all as the formula suggests we have to find $adjA$,
$adjA=\left[ \begin{matrix}
{{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} & {{a}_{21}}{{a}_{33}}-{{a}_{23}}{{a}_{31}} & {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \\
{{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} & {{a}_{11}}{{a}_{33}}-{{a}_{13}}{{a}_{31}} & {{a}_{11}}{{a}_{32}}-{{a}_{12}}{{a}_{31}} \\
{{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} & {{a}_{11}}{{a}_{23}}-{{a}_{13}}{{a}_{21}} & {{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0(1)-0(0) \\
1(1)-0(0) \\
1(0)-0(0) \\
\end{matrix} & \begin{matrix}
1(1)-0(0) \\
0(1)-0(0) \\
0(0)-0(1) \\
\end{matrix} & \begin{matrix}
1(0)-0(0) \\
0(0)-1(0) \\
0(0)-1(1) \\
\end{matrix} \\
\end{matrix} \right]$
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now as we have done above that the signs of the adj will change as per the formula
$adjA=\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]$
Now |A| of matrix$\left[ \begin{matrix}
\begin{matrix}
0 \\
1 \\
0 \\
\end{matrix} & \begin{matrix}
1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
1 \\
\end{matrix} \\
\end{matrix} \right]$ is
$|A|=0(0-0)-1(1-0) +0(0-0)$
$\Rightarrow 0(0)-1+0 $
$\Rightarrow |A|=-1 $
Now as ${{A}^ {-1}} =\dfrac{adjA}{|A|} $
$\Rightarrow {{A}^{-1}}=\dfrac{\left[ \begin{matrix}
\begin{matrix}
0 \\
-1 \\
0 \\
\end{matrix} & \begin{matrix}
-1 \\
0 \\
0 \\
\end{matrix} & \begin{matrix}
0 \\
0 \\
-1 \\
\end{matrix} \\
\end{matrix} \right]}{-1}$=$\left[ \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$= A itself only .
Hence option A is correct.
Note:
${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving adjA and |A| for a 3×3 matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

