
The input resistance of a silicon transistor is 100. Base current is changed by 40mA which results in a change in collector current by 2 mA. This transistor is used as a common emitter amplifier with a load resistance of 4K. The voltage gain of the amplifier is:
(A) 3000
(B) 4000
(C) 1000
(D) 2000
Answer
216.3k+ views
Hint In this question, the base current is changed and it is reflected upon by the collector current. The emitter current in this case is constant. Hence, this configuration is that of a common emitter transistor. First we need to find the current gain in the circuit. Using this value of current gain, we will find the voltage gain in the circuit using the input and output resistance.
Complete step by step solution
We are given a common emitter circuit in this question. The current gain in common emitter transistor is given as:
\[\beta = \dfrac{{\Delta {I_C}}}{{\Delta {I_B}}} = \dfrac{{2 \times {{10}^{ - 3}}}}{{40 \times {{10}^{ - 6}}}}\]
\[\beta = 50\]
To find the voltage gain, we need to use input and output resistance of the transistor.
\[Voltage\,gain = \beta \dfrac{{{R_{out}}}}{{{R_{in}}}} = 50\dfrac{{4000}}{{100}} = 2000\]
Therefore, the option with the correct answer is option D.
Note
In this question, the emitter was made common, i.e. its voltage and current were kept constant. We can make similar transistors which have the common base, or transistors with a common collector. However, the common emitter transistor is highly used in amplifying signals and many other applications.
Complete step by step solution
We are given a common emitter circuit in this question. The current gain in common emitter transistor is given as:
\[\beta = \dfrac{{\Delta {I_C}}}{{\Delta {I_B}}} = \dfrac{{2 \times {{10}^{ - 3}}}}{{40 \times {{10}^{ - 6}}}}\]
\[\beta = 50\]
To find the voltage gain, we need to use input and output resistance of the transistor.
\[Voltage\,gain = \beta \dfrac{{{R_{out}}}}{{{R_{in}}}} = 50\dfrac{{4000}}{{100}} = 2000\]
Therefore, the option with the correct answer is option D.
Note
In this question, the emitter was made common, i.e. its voltage and current were kept constant. We can make similar transistors which have the common base, or transistors with a common collector. However, the common emitter transistor is highly used in amplifying signals and many other applications.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

Diffraction of Light - Young’s Single Slit Experiment

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

