
The input resistance of a silicon transistor is 100. Base current is changed by 40mA which results in a change in collector current by 2 mA. This transistor is used as a common emitter amplifier with a load resistance of 4K. The voltage gain of the amplifier is:
(A) 3000
(B) 4000
(C) 1000
(D) 2000
Answer
214.2k+ views
Hint In this question, the base current is changed and it is reflected upon by the collector current. The emitter current in this case is constant. Hence, this configuration is that of a common emitter transistor. First we need to find the current gain in the circuit. Using this value of current gain, we will find the voltage gain in the circuit using the input and output resistance.
Complete step by step solution
We are given a common emitter circuit in this question. The current gain in common emitter transistor is given as:
\[\beta = \dfrac{{\Delta {I_C}}}{{\Delta {I_B}}} = \dfrac{{2 \times {{10}^{ - 3}}}}{{40 \times {{10}^{ - 6}}}}\]
\[\beta = 50\]
To find the voltage gain, we need to use input and output resistance of the transistor.
\[Voltage\,gain = \beta \dfrac{{{R_{out}}}}{{{R_{in}}}} = 50\dfrac{{4000}}{{100}} = 2000\]
Therefore, the option with the correct answer is option D.
Note
In this question, the emitter was made common, i.e. its voltage and current were kept constant. We can make similar transistors which have the common base, or transistors with a common collector. However, the common emitter transistor is highly used in amplifying signals and many other applications.
Complete step by step solution
We are given a common emitter circuit in this question. The current gain in common emitter transistor is given as:
\[\beta = \dfrac{{\Delta {I_C}}}{{\Delta {I_B}}} = \dfrac{{2 \times {{10}^{ - 3}}}}{{40 \times {{10}^{ - 6}}}}\]
\[\beta = 50\]
To find the voltage gain, we need to use input and output resistance of the transistor.
\[Voltage\,gain = \beta \dfrac{{{R_{out}}}}{{{R_{in}}}} = 50\dfrac{{4000}}{{100}} = 2000\]
Therefore, the option with the correct answer is option D.
Note
In this question, the emitter was made common, i.e. its voltage and current were kept constant. We can make similar transistors which have the common base, or transistors with a common collector. However, the common emitter transistor is highly used in amplifying signals and many other applications.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

CBSE Class 10 Sanskrit Set 4 52 Question Paper 2025 – PDF, Solutions & Analysis

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

How to Convert a Galvanometer into an Ammeter or Voltmeter

